【控制】垂直起降无人机的动态模型附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

垂直起降无人机(VTOL UAV)因其在狭小空间内起降和悬停的能力而受到广泛关注。为了设计有效的控制系统,建立准确的动态模型至关重要。本文介绍了 VTOL UAV 的动态模型,包括其运动方程和控制输入。此外,本文还讨论了模型的线性化和非线性控制方法。

简介

VTOL UAV 是一种能够垂直起降和悬停的无人机。与传统的固定翼飞机相比,VTOL UAV 具有更大的机动性和灵活性,使其非常适合城市环境、搜索和救援行动以及军事应用。

为了设计有效的控制系统,需要建立准确的 VTOL UAV 动态模型。该模型应能够捕获无人机的运动特性,包括其位置、速度和姿态。此外,该模型还应考虑控制输入,例如推力、扭矩和控制面偏转。

运动方程

VTOL UAV 的运动方程可以从牛顿运动定律导出。这些方程描述了无人机在六个自由度上的运动:

控制输入

VTOL UAV 的控制输入包括:

  • **推力:**由旋翼或推进器产生,用于控制无人机在 �z 轴上的运动

  • **扭矩:**由旋翼或控制面产生,用于控制无人机绕 �x 和 �y 轴的运动

  • **控制面偏转:**用于控制无人机绕 �z 轴的运动

模型线性化

对于许多控制应用,将 VTOL UAV 的非线性运动方程线性化非常有用。这可以通过在平衡点附近对方程进行泰勒展开来实现。线性化模型可以表示为:

非线性控制方法

对于 VTOL UAV 的非线性运动方程,可以使用各种非线性控制方法。这些方法包括:

  • **滑模控制:**一种鲁棒的控制方法,即使在存在不确定性和干扰的情况下也能保证系统稳定性

  • **反馈线性化:**一种将非线性系统转换为线性系统的控制方法

  • **非线性模型预测控制:**一种基于模型的控制方法,可以预测系统未来的行为并优化控制输入

结论

建立准确的 VTOL UAV 动态模型是设计有效控制系统至关重要的一步。本文介绍了 VTOL UAV 的运动方程、控制输入、模型线性化和非线性控制方法。通过了解这些概念,工程师可以开发出能够在各种环境中安全可靠地运行的 VTOL UAV。

📣 部分代码

classdef AircraftVisualizer    properties        Model3D        Animation    end        methods        function obj = AircraftVisualizer()            % Animation parameters %            obj.Animation.timestep = 0.01;            obj.Animation.zoom = 1.0;            obj.Animation.show_position_plot = true;                        % 3D Model constants %            obj.Model3D.cg_position_from_front = -0.494;            obj.Model3D.cg_position_from_bottom = 0.25;            obj.Model3D.wingspan = 2.5;            obj.Model3D.alpha = 1.0;            obj.Model3D.color = [0.85 0.85 0.9];                        % Initialize visualizer object %            model = stlread('3d_files/babyshark.stl');            obj.Model3D.stl_data.vertices = model.vertices;            obj.Model3D.stl_data.faces = model.faces;            obj = obj.initialize_aircraft_model();            obj.Model3D.max_aircraft_dimensions = max(max(sqrt(sum(obj.Model3D.stl_data.vertices.^2, 2))));            obj = obj.create_ax_object();            obj.Animation.aircraft_transformation = hgtransform('Parent', obj.Animation.PlotAxes.ax_3d);        end                function obj = initialize_aircraft_model(obj)            V0 = obj.Model3D.stl_data.vertices;            % Rotate the aircraft 3d model to initial position, with positive x-axis out of nose            initial_phi = pi/2;            initial_theta = 0;            initial_psi = pi/2;            V0 = obj.rotate_vertices(V0, initial_phi, initial_theta, initial_psi);            % Scale the aircraft 3d model to the correct size            V0 = obj.scale_aircraft(obj.Model3D.wingspan, V0);            % Move origin to front of aircraft nose            temp_max = max(V0);            temp_min = min(V0);            ranges = abs(temp_max - temp_min);            aircraft_length = ranges(1);            V0 = V0 - [aircraft_length obj.Model3D.wingspan/2 0];            % Move model origin to correct aircraft cg            cg_position = [...                obj.Model3D.cg_position_from_front ...                0 ...                obj.Model3D.cg_position_from_bottom...                ];            V0 = V0 - cg_position;                         obj.Model3D.stl_data.vertices = V0;        end                function V_scaled = scale_aircraft(~, wingspan, V)            temp_max = max(V);            temp_min = min(V);            ranges = abs(temp_max - temp_min);            y_range = ranges(2);            zoom_factor = y_range / wingspan;            V_scaled = V / zoom_factor;        end                function V_rotated = rotate_vertices(~, V, phi, theta, psi)            Rx = [1 0 0;                  0 cos(phi) -sin(phi);                  0 sin(phi) cos(phi)];            Ry = [cos(theta) 0 sin(theta);                  0 1 0;                  -sin(theta) 0 cos(theta)];            Rz = [cos(psi), -sin(psi), 0 ;                  sin(psi), cos(psi), 0 ;                         0,         0, 1 ];            V_rotated = V * Rx';            V_rotated = V_rotated * Ry';            V_rotated = V_rotated * Rz';        end                function render_plot(obj)            axis(obj.Animation.PlotAxes.ax_3d, 'equal');            viewbox = [-1 1 -1 1 -1 1] * (1/obj.Animation.zoom) * obj.Model3D.max_aircraft_dimensions;            axis(obj.Animation.PlotAxes.ax_3d, viewbox);            set(gcf,'Color',[1 1 1])            view(obj.Animation.PlotAxes.ax_3d, [30 10])            camlight(obj.Animation.PlotAxes.ax_3d, 'left');            material(obj.Animation.PlotAxes.ax_3d, 'dull');        end                function plot_aircraft(obj)            patch(obj.Animation.PlotAxes.ax_3d, 'Faces', obj.Model3D.stl_data.faces, ...                'Vertices', obj.Model3D.stl_data.vertices, ...                 'FaceColor', obj.Model3D.color, ...                 'FaceAlpha', obj.Model3D.alpha, ...                 'EdgeColor',       'none',        ...                 'FaceLighting',    'gouraud',     ...                 'AmbientStrength', 0.15,...                 'Parent', obj.Animation.aircraft_transformation); hold on             scatter3(obj.Animation.PlotAxes.ax_3d, 0,0,0,'filled');             obj.render_plot();        end                function obj = plot_inputs(obj, t, x)            y_datasources = ["delta_a_evolution" "delta_e_evolution" "delta_r_evolution"];            input_plot_names = ["\delta_a" "\delta_e", "\delta_r"];            ylabels = ["deg [^circ]" "deg [^circ]" "deg [^circ]"];                        for i = 1:3                obj.Animation.InputPlotHandles{i} = plot(obj.Animation.PlotAxes.ax_inputs{i}, t(1), rad2deg(x(1)), 'XDataSource', 'time', 'YDataSource', y_datasources(i));                xlim(obj.Animation.PlotAxes.ax_inputs{i}, [t(1), t(end)]);                ylim(obj.Animation.PlotAxes.ax_inputs{i}, [-27, 27]);                                title(obj.Animation.PlotAxes.ax_inputs{i}, input_plot_names(i));                ylabel(obj.Animation.PlotAxes.ax_inputs{i}, ylabels(i));                grid(obj.Animation.PlotAxes.ax_inputs{i}, 'on');                 box(obj.Animation.PlotAxes.ax_inputs{i}, 'on');            end                        xlabel(obj.Animation.PlotAxes.ax_inputs{3}, "Time [s]");        end                function [t, x] = interpolate_trajectory_for_animation(obj, t_trajectory, x_trajectory)            t_0 = t_trajectory(1);            t_end = t_trajectory(end);            t = t_0:obj.Animation.timestep:t_end;            x = interp1(t_trajectory,x_trajectory,t);         end                function obj = plot_text(obj)            obj.Animation.time_text_handle = text(...                obj.Animation.PlotAxes.ax_3d, ...                0 * obj.Model3D.max_aircraft_dimensions, ...                0 * obj.Model3D.max_aircraft_dimensions, ...                1 * obj.Model3D.max_aircraft_dimensions, ...                't = 0 sec',...                'FontSize', 20);        end                function obj = plot_position(obj, pos)            obj.Animation.PosPlotHandle = plot3(obj.Animation.PlotAxes.ax_pos, pos(1,1), pos(1,2), pos(1,3), ...            'XDataSource', 'pos_n', 'YDataSource', 'pos_w', 'ZDataSource', 'pos_h');            axis(obj.Animation.PlotAxes.ax_pos, 'equal');            mAnimation.PlotAxes.ax_pos = max([abs(pos); [50 50 50]]);            viewbox = [-mAnimation.PlotAxes.ax_pos(1) mAnimation.PlotAxes.ax_pos(1) -mAnimation.PlotAxes.ax_pos(2) mAnimation.PlotAxes.ax_pos(2) 0 mAnimation.PlotAxes.ax_pos(3)] * 1.2;            axis(obj.Animation.PlotAxes.ax_pos, viewbox);            set(gcf,'Color',[1 1 1])            view(obj.Animation.PlotAxes.ax_pos, [30 10])            grid(obj.Animation.PlotAxes.ax_pos, 'on');                        title(obj.Animation.PlotAxes.ax_pos, 'Position', 'FontSize', 16)            xlabel(obj.Animation.PlotAxes.ax_pos, "north [m]");            ylabel(obj.Animation.PlotAxes.ax_pos, "west [m]");            zlabel(obj.Animation.PlotAxes.ax_pos, "altitude [m]");        end                function plot_trajectory(obj, t_trajectory, x_trajectory)            [t, x] = obj.interpolate_trajectory_for_animation(t_trajectory, x_trajectory);            n = x(:,1);            e = x(:,2);            d = x(:,3);            pos = [n -e -d];            phi = x(:,10);            theta = x(:,11);            psi = x(:,12);                        obj.plot_aircraft();            if obj.Animation.show_position_plot                obj = obj.plot_position(pos);            end            obj = obj.plot_inputs(t, x);            obj = obj.plot_text();                       tic;            for i = 1:length(t)                % Rotate the aircraft rigid-body                Mx = makehgtform('xrotate', phi(i));                My = makehgtform('yrotate', -theta(i));                Mz = makehgtform('zrotate', -psi(i));                set(obj.Animation.aircraft_transformation, 'Matrix', Mx*My*Mz);                                % Update time text                set(obj.Animation.time_text_handle, 'String', sprintf('t = %3.2f sec',t(i)))                % Update position plot                if obj.Animation.show_position_plot                    pos_n = pos(1:i,1);                    pos_w = pos(1:i,2);                    pos_h = pos(1:i,3);                    refreshdata(obj.Animation.PosPlotHandle, 'caller');                end                                % Update input plots                time = t(1:i);                delta_a_evolution = rad2deg(x(1:i,13));                delta_e_evolution = rad2deg(x(1:i,14));                delta_r_evolution = rad2deg(x(1:i,15));                refreshdata(obj.Animation.InputPlotHandles{1}, 'caller');                refreshdata(obj.Animation.InputPlotHandles{2}, 'caller');                refreshdata(obj.Animation.InputPlotHandles{3}, 'caller');                                % Control the animation speed to be realtime                if obj.Animation.timestep * i - toc > 0                    pause(max(0, obj.Animation.timestep * i - toc))                end            end        end                function obj = create_ax_object(obj)            obj.Animation.fig = figure;            screensize = get(0,'ScreenSize');                        % Show position plot and move other plots            if obj.Animation.show_position_plot                obj.Animation.PlotAxes.ax_pos = axes(obj.Animation.fig, 'position',[0.05 0.5 0.2 0.4]);                                pos_plot_position = [0.25 0.0 0.5 1];                input_plot_positions = [0.75 0.7 0.2 0.15;                                        0.75 0.5 0.2 0.15;                                        0.75 0.3 0.2 0.15];            else                pos_plot_position = [0 0.0 0.5 1];                input_plot_positions = [0.6 0.7 0.35 0.15;                                        0.6 0.5 0.35 0.15;                                        0.6 0.3 0.35 0.15];            end                        set(gcf,'Position', ...                [screensize(3)/40 screensize(4)/12 screensize(3)/1.5 screensize(4)/1.5],...                'Visible','on');                        obj.Animation.PlotAxes.ax_3d = axes(obj.Animation.fig, 'position', pos_plot_position);            axis off            set(obj.Animation.PlotAxes.ax_3d,'color','none');            axis(obj.Animation.PlotAxes.ax_3d, 'equal')            hold on;                                                for i = 1:3                obj.Animation.PlotAxes.ax_inputs{i} = axes(obj.Animation.fig, 'position', input_plot_positions(i,:));             end        end    endend

⛳️ 运行结果

🔗 参考文献

B. P. Graesdal, “Full Nonlinear System Identification for a Vertical-Takeoff-and-Landing Unmanned Aerial Vehicle,” Master thesis, NTNU, 2021. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2981320

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值