✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本文提出了一种基于藤壶交配优化器 (BFO)、泥模算法 (MFA) 和海洋捕食者算法 (OFA) 的混合算法,用于解决带障碍的二维布局优化问题。该算法结合了 BFO 的全局搜索能力、MFA 的局部搜索能力和 OFA 的平衡探索和利用能力,有效地解决了障碍物对布局优化的影响。通过算例验证,该算法在求解带障碍的二维布局优化问题方面具有良好的性能。
引言
布局优化问题广泛存在于制造、物流和计算机等领域。带障碍的二维布局优化问题是指在存在障碍物的情况下,对二维空间中的对象进行布局,以优化特定目标函数。障碍物的存在对布局优化提出了挑战,传统的优化算法难以有效地处理障碍物的影响。
方法
本文提出的混合算法主要包括以下三个步骤:
-
**障碍物处理:**采用 BFO 算法对障碍物进行处理。BFO 算法模拟藤壶在海洋中的附着行为,具有较强的全局搜索能力。通过 BFO 算法,可以有效地识别障碍物区域并将其纳入优化过程中。
-
**局部搜索:**采用 MFA 算法对障碍物周围区域进行局部搜索。MFA 算法模拟泥模在泥浆中的运动,具有较强的局部搜索能力。通过 MFA 算法,可以精细地搜索障碍物周围的解空间,提高布局优化的精度。
-
**平衡探索和利用:**采用 OFA 算法对整个优化过程进行平衡探索和利用。OFA 算法模拟海洋捕食者捕食行为,具有较强的平衡探索和利用能力。通过 OFA 算法,可以有效地避免算法陷入局部最优,提高布局优化的全局收敛性。
算例验证
为了验证该算法的性能,本文将其应用于三个带障碍的二维布局优化算例。算例结果表明,该算法在求解带障碍的二维布局优化问题方面具有良好的性能,能够有效地处理障碍物的影响,获得高质量的布局方案。
结论
本文提出的基于 BFO、MFA 和 OFA 的混合算法为带障碍的二维布局优化问题提供了一种有效且高效的求解方法。该算法结合了三种算法的优势,有效地处理了障碍物的影响,提高了布局优化的精度和全局收敛性。该算法有望在制造、物流和计算机等领域得到广泛应用。
📣 部分代码
clear all
close all
clc
addpath('Base')
addpath('FLP')
addpath('BMO')
addpath('SMA')
addpath('MPA')
%algorithms = { 'FLP','BMO','MPA','SMA'};
algorithms = { 'FLP'};
run = 1; % 25
Max_iteration = 6;
PopSize =5;
filename = 'result';
functionsNumber = 4;
ShowBestAnswer = 3;
solution = zeros(functionsNumber, run);
InitValues;
Answer = repmat(Chromosome(),(ShowBestAnswer*functionsNumber),MachineNumber);
currentval = 1;
for ii = 1 : length(algorithms)
disp(algorithms(ii));
algorithm = str2func(char(algorithms(ii)));
for i = 1 : functionsNumber
disp(i);
for j = 1 : run
chromo = algorithm(algorithms(ii),Max_iteration,chromosomes,PopSize, MachineNumber,LengthWorkshop,WidthWorkshop,ub,M,L,W,Xio,Yio,Xoo,Yoo,Lo,Wo,Xo,Yo,ylower,yupper,xlower,xupper,f,C,ShowBestAnswer,LoC,WoC,XoC,YoC);
Answer(currentval,:)= chromo(ii,:);
currentval = currentval+1;
% solution(i, j) = bestFitness - globalMins(i);
end
end
% xlswrite(strcat(filename, '-d=', num2str(dimension), '.xlsx'), solution, func2str(algorithm));
eD = strcat(func2str(algorithm), '-Bitti :)');
disp(eD);
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类