✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文介绍了一种基于泰勒级数展开的最小二乘算法,用于解决GPSTDOA联合定位问题。该方法利用泰勒级数展开将非线性观测方程线性化,并结合最小二乘原理进行参数估计。与传统的迭代算法相比,该方法具有计算效率高、收敛速度快等优点。
1. 引言
全球定位系统(GPS)和时间差分到达角(TDOA)技术是两种重要的定位技术,它们可以相互补充,提高定位精度。GPSTDOA联合定位技术将GPS和TDOA技术结合起来,可以有效地提高定位精度和可靠性。
最小二乘法是一种常用的参数估计方法,它可以有效地解决线性观测方程的参数估计问题。然而,GPSTDOA联合定位问题是非线性的,无法直接使用最小二乘法进行求解。
2. 泰勒级数展开最小二乘算法
为了解决GPSTDOA联合定位问题的非线性问题,本文提出了一种基于泰勒级数展开的最小二乘算法。该算法利用泰勒级数展开将非线性观测方程线性化,并结合最小二乘原理进行参数估计。
3. 仿真实验
为了验证泰勒级数展开最小二乘算法的有效性,进行了一系列仿真实验。仿真结果表明,该算法可以有效地提高定位精度和可靠性。
4. 结论
本文介绍了一种基于泰勒级数展开的最小二乘算法,用于解决GPSTDOA联合定位问题。该方法利用泰勒级数展开将非线性观测方程线性化,并结合最小二乘原理进行参数估计。与传统的迭代算法相比,该方法具有计算效率高、收敛速度快等优点。
📣 部分代码
%% GPS/TDOA联合定位的泰勒级数展开最小二乘仿真主程序
clc
clear
close all
%% 设置仿真环境
%GPS卫星坐标
GPSxyz=[
20000, 20000,20000;
-20000, 20000,20000;
-20000,-20000,20000;
20000,-20000,20000;
];
%基站坐标
BSxyz0=[1000,0,30];
BSxyz=[
0, 1000, 30;
-1000, 0, 30;
0,-1000, 30;
];
%目标真实坐标
xr=1000*(rand-0.5);
yr=1000*(rand-0.5);
zr=100*rand;
wr=0;
%% 模拟产生观测量
M=size(GPSxyz,1);%伪距观测量个数
N=size(BSxyz,1);%TDOA观测量个数
SigmaDist=20;%伪距观测误差,标准差,折算成距离(单位:米)
SigmaRho=60;%TDOA观测误差,标准差,折算成距离(单位:米)
Dist=zeros(M,1);
Rho=zeros(N,1);
for i=1:M
⛳️ 运行结果
🔗 参考文献
[1] 张强.多目标室内超声波三维定位系统的研究[D].南京师范大学,2019.
[2] 张强.多目标室内超声波三维定位系统的研究[D].南京师范大学,2018.DOI:CNKI:CDMD:2.1018.292025.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类