【BES-CNN-LSTM-Multihead-Attention预测】基于秃鹰算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络实现温度预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

温度预测在能源管理、气象预报、农业生产等领域具有重要意义。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络 (CNN) 和长短记忆神经网络 (LSTM) 被广泛应用于温度预测。然而,传统的 CNN-LSTM 模型在处理时间序列数据时存在一些局限性,例如无法有效捕获时间序列中的长程依赖关系,以及对噪声敏感等问题。为了解决这些问题,本文提出了一种基于秃鹰算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络 (BES-CNN-LSTM-Multihead-Attention) 模型,用于提高温度预测的精度和稳定性。

模型架构

BES-CNN-LSTM-Multihead-Attention 模型主要由以下几个部分组成:

  1. 卷积神经网络 (CNN):CNN 用于提取时间序列数据中的局部特征。

  2. 长短记忆神经网络 (LSTM):LSTM 用于捕获时间序列数据中的长程依赖关系。

  3. 多头注意力机制 (Multihead-Attention):多头注意力机制可以关注时间序列数据中的关键信息,并有效地捕捉不同时间尺度上的依赖关系。

  4. 秃鹰算法 (BES):秃鹰算法是一种新型的优化算法,可以用于优化模型参数,提高模型性能。

模型训练

模型训练过程主要包括以下步骤:

  1. 数据预处理: 对原始温度数据进行预处理,例如数据清洗、归一化、特征提取等。

  2. 模型初始化: 初始化 BES-CNN-LSTM-Multihead-Attention 模型的参数。

  3. 训练过程: 利用训练数据集训练模型,并使用秃鹰算法优化模型参数。

  4. 模型评估: 使用测试数据集评估模型性能,并分析模型结果。

模型创新

本文提出的 BES-CNN-LSTM-Multihead-Attention 模型具有以下创新点:

  1. 结合多头注意力机制: 利用多头注意力机制可以有效地捕获时间序列数据中的不同时间尺度上的依赖关系,提高模型的预测精度。

  2. 使用秃鹰算法优化: 秃鹰算法是一种新型的优化算法,可以有效地优化模型参数,提高模型的性能。

  3. 融合 CNN 和 LSTM: 通过将 CNN 和 LSTM 相结合,可以有效地提取时间序列数据中的局部特征和长程依赖关系。

实验结果

实验结果表明,BES-CNN-LSTM-Multihead-Attention 模型在温度预测任务中表现出良好的性能,与传统的 CNN-LSTM 模型相比,其预测精度和稳定性都有显著提高。

结论

本文提出了一种基于秃鹰算法优化多头注意力机制的卷积神经网络结合长短记忆神经网络 (BES-CNN-LSTM-Multihead-Attention) 模型,用于提高温度预测的精度和稳定性。实验结果验证了该模型的有效性。未来,可以进一步研究如何将该模型应用于其他时间序列预测任务,例如电力负荷预测、金融市场预测等。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值