基于鲸鱼算法优化高斯过程回归WOA-GPR实现光伏预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

光伏发电作为一种清洁、可再生能源,其预测精度对提高电网运行效率和稳定性至关重要。高斯过程回归(GPR)是一种非参数回归方法,能够有效捕捉数据的非线性特征,在光伏预测领域展现出显著优势。然而,GPR模型的性能高度依赖于超参数的选取,而传统的超参数优化方法往往效率低下,难以获得最优解。为了克服这一难题,本文提出了一种基于鲸鱼算法(WOA)优化的GPR模型 (WOA-GPR),用于提高光伏发电预测精度。WOA算法作为一种新型的群智能优化算法,具有搜索能力强、收敛速度快等优点,能够有效地搜索GPR模型的最佳超参数。通过将WOA算法与GPR模型相结合,本文实现了对光伏发电的精确预测。实验结果表明,WOA-GPR模型在预测精度和稳定性方面均优于传统GPR模型,验证了该方法的有效性。

关键词:光伏预测,高斯过程回归,鲸鱼算法,超参数优化

1. 引言

随着全球能源结构调整和环境保护意识的增强,光伏发电作为一种清洁、可再生能源,其发展速度不断加快。准确预测光伏发电出力对于提高电网运行效率、降低电力系统运行成本、提升电力系统安全性和稳定性具有重要意义。

高斯过程回归(GPR)是一种非参数回归方法,它基于贝叶斯理论,通过对数据进行建模,进而预测未来的值。GPR模型能够有效地捕捉数据的非线性特征,在光伏预测领域展现出显著优势。然而,GPR模型的性能高度依赖于超参数的选取,包括核函数类型、核函数参数等。传统的超参数优化方法,如网格搜索、随机搜索等,往往效率低下,难以获得最优解,限制了GPR模型的预测精度。

近年来,群智能优化算法在超参数优化领域得到了广泛应用。鲸鱼算法(WOA)是一种新型的群智能优化算法,该算法模拟了座头鲸觅食行为,具有搜索能力强、收敛速度快、易于实现等优点,在许多优化问题中都展现出了优异的性能。

本文提出了一种基于鲸鱼算法优化的GPR模型 (WOA-GPR),用于提高光伏发电预测精度。WOA算法负责搜索GPR模型的最佳超参数,而GPR模型则利用这些超参数进行光伏预测。通过将WOA算法与GPR模型相结合,本文实现了对光伏发电的精确预测。

2. 光伏预测方法

2.1 高斯过程回归(GPR)

高斯过程回归(GPR)是一种非参数回归方法,其核心思想是将目标函数视为一个高斯过程。高斯过程是指一系列随机变量,这些变量的任何有限子集都服从联合正态分布。

GPR模型假设目标函数满足高斯过程先验分布,并通过训练数据学习高斯过程的协方差函数。协方差函数描述了不同样本之间相关性的大小,其形式决定了GPR模型的预测能力。常用的协方差函数包括平方指数核函数、马特恩核函数等。

GPR模型的预测过程分为两个步骤:

  1. 训练阶段: 利用训练数据学习高斯过程的协方差函数参数,并计算出目标函数的先验分布。

  2. 预测阶段: 根据已知的训练数据和预测点,利用高斯过程的贝叶斯定理计算出目标函数在预测点的后验分布,并以后验分布的均值作为预测结果。

2.2 鲸鱼算法(WOA)

鲸鱼算法(WOA)是一种新型的群智能优化算法,该算法模拟了座头鲸觅食行为。座头鲸在觅食时会形成螺旋形包围圈,逐渐缩小包围圈,最终捕获猎物。WOA算法利用螺旋形搜索策略和收缩包围策略,模拟座头鲸的觅食行为,从而实现对优化问题的求解。

WOA算法主要包含以下步骤:

  1. 初始化种群: 随机生成一组初始解,作为鲸鱼个体。

  2. 更新位置: 每个鲸鱼个体根据当前最优解和螺旋形搜索策略更新自己的位置。

  3. 收缩包围: 随着迭代次数的增加,包围圈逐渐缩小,逼近最优解。

  4. 更新最优解: 如果某个鲸鱼个体找到了比当前最优解更优的解,则更新最优解。

  5. 停止条件: 当达到最大迭代次数或满足其他停止条件时,算法结束,返回最优解。

2.3 WOA-GPR模型

本文提出的WOA-GPR模型将WOA算法与GPR模型相结合,用于提高光伏发电预测精度。WOA算法负责搜索GPR模型的最佳超参数,而GPR模型则利用这些超参数进行光伏预测。

WOA-GPR模型的具体步骤如下:

  1. 初始化WOA种群: 随机生成一组初始解,作为鲸鱼个体,每个个体对应一组GPR模型的超参数。

  2. 使用WOA算法搜索最佳超参数: 利用WOA算法迭代更新鲸鱼个体的位置,最终找到一组最佳超参数。

  3. 训练GPR模型: 利用最佳超参数训练GPR模型,并使用训练好的GPR模型进行光伏预测。

3. 实验结果与分析

为了验证WOA-GPR模型的有效性,本文进行了对比实验。实验数据来自某光伏发电站,包含2020年1月至2021年12月的历史数据。实验将WOA-GPR模型与传统GPR模型进行比较,评价指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R-squared)。

4. 结论

本文提出了一种基于鲸鱼算法优化的GPR模型 (WOA-GPR),用于提高光伏发电预测精度。WOA算法能够有效地搜索GPR模型的最佳超参数,从而提高预测精度。实验结果表明,WOA-GPR模型在预测精度和稳定性方面均优于传统GPR模型,验证了该方法的有效性。

未来工作将进一步研究WOA算法的改进方法,以提高其搜索效率和优化效果。此外,还将探索将其他群智能优化算法应用于GPR模型超参数优化,以提升光伏预测的精度和可靠性。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
WOA-BP鲸鱼算法优化BP神经网络是一种常见的神经网络优化方法。下面是一些基本概念和实现步骤: 1. WOA-BP鲸鱼算法简介 WOA-BP鲸鱼算法是一种基于鲸鱼群智能优化算法和BP神经网络的优化方法。其基本思想是通过模拟鲸鱼的迁徙和捕食行为来寻找最优解。 2. BP神经网络简介 BP神经网络是一种常见的人工神经网络模型,其基本思想是通过反向传播算法来训练神经网络,从而实现对输入输出之间的映射关系进行学习和建模。 3. WOA-BP鲸鱼算法优化BP神经网络步骤 (1) 初始化BP神经网络参数和WOA算法参数; (2) 根据当前种群位置计算适应度函数值; (3) 利用WOA算法更新种群位置; (4) 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序; (5) 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2。 4. Matlab代码实现 以下是Matlab代码实现的基本框架: ``` % Step 1: 初始化BP神经网络参数和WOA算法参数 % Step 2: 根据当前种群位置计算适应度函数值 % Step 3: 利用WOA算法更新种群位置 % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 % 以下是一个简单的示例代码: % Step 1: 初始化BP神经网络参数和WOA算法参数 pop_size = 10; % 种群大小 max_iter = 100; % 最大迭代次数 dim = 10; % 每个个体的维度 c1 = 2; % 常数c1 c2 = 2; % 常数c2 c3 = 2; % 常数c3 a = 2; % 常数a x_max = 100; % 变量x的上限 x_min = -100; % 变量x的下限 w_max = 1; % 权重w的上限 w_min = -1; % 权重w的下限 pop_position = rand(pop_size,dim); % 随机初始化种群位置 pop_fitness = zeros(1,pop_size); % 初始化种群适应度函数值 % Step 2: 根据当前种群位置计算适应度函数值 for i=1:pop_size pop_fitness(i) = fitness_func(pop_position(i,:)); % 计算适应度函数值 end % Step 3: 利用WOA算法更新种群位置 for t=1:max_iter % 迭代次数循环 for i=1:pop_size % 种群个体循环 r1 = rand(); r2 = rand(); A = 2*a*r1-a; C = 2*r2; b = 1; l = (a-1)*rand()+1; p = rand(); % 随机生成参数p if p<0.5 % 更新个体位置 for j=1:dim if rand()<0.5 D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*cos(2*pi*l)+pop_position(i,j); else D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*sin(2*pi*l)+pop_position(i,j); end if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end else % 更新种群位置 for j=1:dim % 根据WOA-BP算法来更新种群中所有个体的位置,并求出每个个体的适应度函数值 r3 = rand(); D = abs(pop_position(i,j)-pop_position(r3,j)); pop_position(i,j) = D*cos(c1*2*pi)*pop_position(r3,j)+D*cos(c2*2*pi)*pop_position(best_index,j)+D*cos(c3*2*pi)*rand(); if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end for j=1:dim % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end end end end % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 for i=1:pop_size % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end [sorted_fit, sorted_index] = sort(pop_fitness); % 排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 if sorted_fit(1)<min_fitness_val % 达到最小误差则停止迭代,输出最优解 best_solution = pop_position(sorted_index(1),:); fprintf('The best solution is:\n'); disp(best_solution); else % 没有达到最小误差,则继续迭代下去 continue; end % 定义适应度函数fitness_func,根据当前权重计算误差值并返回fitness_val function fitness_val=fitness_func(weights) ... (根据权重weights计算误差并返回fitness_val) end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值