1 内容介绍

配电网是现代电力系统中的重要组成部分之一,其任务是把从电源或输电网获得的电能直接分配给不同电压等级的用户.配电网网架规划优化是配电网络规划中的重点,进行好此项工作,可以大大提高配电网的投资效率,为配电网络的灵活可靠运行打下良好的基础. 随着大规模,跨区域的配电网不断发展,对配电网运行的经济性和可靠性要求越来越高,在配电网发生大范围停电事故后,需要对配电网的拓扑结构进行重新组合,从而达到恢复供电的目的,这个重新组合配电网拓扑结构的过程即为配电网恢复重构.配电网恢复重构是一个多目标非线性组合优化问题,智能优化算法被认为是当前最有效的求解方法. 本文选用了粒子群算法作为求解配电网恢复重构问题的智能优化算法.

2 仿真代码

clc;

clear;

close all

%%%%%%%%%%%%%%%%%%% 主函数调用的主要分函数 %%%%%%%%%%%%%%%%%%%%%%%%%%

% -f03 : 粒子解值集间的减法算子

% -f05 : 粒子解值集与速度值集间的加法算子

% -Tree : 构造初始辐射网络粒子

% -changes : 网络结构分层显示

% -cthd01 : 网络前推后代潮流计算

% -fuzhi ; 新粒子赋值判断

%%%%%%%%%%%%%%%%%%% 主函数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global popsize; %种群规模

global M; %节点原始参数,节点坐标

global N; %节点原始参数,节点功率

global inx ind;

global gen; %迭代次数

global k Z;

global c1 a; %个体最优导向系数

global c2 i; %全局最优导向系数

global best_fitness; %最优解

global best_in_history; %最优解变化轨迹

global gbest_x; %全局最优解矩阵

global Sb Ub Zb; %基准值

global exetime; %当前迭代次数

gen=200;

Ci=0.155; % 线路年运行维护系数

Tm=4000;dj=0.05; % 负荷最大利用小时数和电价

popsize=10;

%% 原始参数输入,程序初始化 %%

Z=[];Zk=0.2*(0.85+j*0.385);

M=[4.05 3.25 4.05 5.4 4.05 2 1.2;5.7 6.2 6.7 4.2 3.05 6.7 5.7];

N=[1 1.50+j*1.13 0.4+j*0.3 0.75+j*0.55 1.2+j*0.9 0.6+j*0.45 0.55+j*0.41]

Sb=10;

Ub=10.5;

Zb=Ub^2/Sb;

    %%% 实时输出结果 %%%

    if exetime-1>0 % exetime 当前迭代次数

        line([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);

        title('粒子群最优解变化轨迹');

        xlabel('迭代次数 x');

        ylabel('最优解 y');

        grid on;

        hold on;

    end

end % 迭代次数结束;

3 运行结果

【配电网重构】基于粒子群算法实现实现直流潮流计算配电网网架结构重构附matlab代码_优化算法

【配电网重构】基于粒子群算法实现实现直流潮流计算配电网网架结构重构附matlab代码_迭代_02

编辑

4 参考文献

[1]彭伊伊. 基于粒子群算法的配电网恢复重构的研究. 华中科技大学, 2012.

[2]郭巨新. 基于改进粒子群算法的配电网网架规划优化研究[D]. 华北电力大学, 2011.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。