✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
变分模态分解(Variational Mode Decomposition,VMD)是一种自适应、非平稳信号分解方法,通过最小化变分问题,将信号分解为一系列有限带宽的模态。近年来,VMD在信号处理领域得到广泛应用,但在实际应用中,VMD的参数选择,例如模态数(K)和惩罚因子(α),对分解结果影响显著,需要进行优化。
冠豪猪算法(Crown-Hedgehog Algorithm,CHA)是一种新型的启发式优化算法,其灵感来源于自然界中冠豪猪的觅食行为,具有良好的全局搜索能力和快速收敛性。将CHA应用于VMD参数优化,可以有效提升VMD分解的性能,获得更准确、更可靠的分解结果。
本文提出一种基于冠豪猪算法优化变分模态分解的数字信号分解方法,即CPO-VMD。该方法通过CHA优化VMD的K值和α值,并将分解结果与其他指标进行综合评价,以提高信号分解的准确性和可靠性。
二、变分模态分解(VMD)
VMD是一种基于变分理论的信号分解方法,其基本思想是将信号分解为一系列有限带宽的模态,并通过最小化一个变分问题来确定模态的中心频率和带宽。VMD的数学模型如下:
min_{u_k,\omega_k} \sum_{k=1}^K \left( \left\| \partial_t\left[ \left( \delta(t) - \frac{j\omega_k}{\pi t} \right)* u_k(t) \right] \right\|^2_2 + \alpha \left\| u_k(t) \right\|^2_2 \right)
\text{subject to} \sum_{k=1}^K u_k(t) = f(t)
三、冠豪猪算法(CHA)
CHA是一种新型的启发式优化算法,其灵感来源于自然界中冠豪猪的觅食行为。冠豪猪在觅食过程中会根据自身的位置和食物的分布情况进行移动,并不断更新自身的位置信息,直到找到最优的食物来源。
CHA算法的核心思想是通过模拟冠豪猪的觅食行为,在搜索空间中进行全局搜索,以寻找最优解。算法的主要步骤如下:
-
初始化种群: 随机生成一组个体,每个个体代表一个可能的解。
-
适应度评估: 计算每个个体的适应度值,适应度值越高,表示该个体越接近最优解。
-
更新位置: 根据个体的适应度值,更新每个个体的位置。更新方式是根据个体的位置和适应度值,模拟冠豪猪的觅食行为,进行移动。
-
终止条件: 当满足预设的终止条件,例如达到最大迭代次数或适应度值不再变化时,算法停止运行。
四、基于冠豪猪算法优化变分模态分解(CPO-VMD)
CPO-VMD算法将CHA应用于VMD的参数优化,以提高VMD分解的性能。其具体步骤如下:
-
初始化: 设置CHA算法的参数,如种群大小、迭代次数等,并随机生成一组初始解,每个解对应一组VMD参数(K值、α值)。
-
适应度评估: 使用VMD对每个解进行信号分解,并根据分解结果计算相应的适应度值。本文采用综合指标,如模态互信息(MI)、模态边缘密度(MED)、模态能量集中度(MEC)等,来评价分解结果。
-
更新位置: 使用CHA算法更新每个解的位置,即更新VMD的参数(K值、α值)。
-
终止条件: 当满足预设的终止条件时,算法停止运行,此时得到最优的VMD参数。
-
信号分解: 使用优化后的VMD参数对原始信号进行分解,得到最终的模态信号。
五、实验结果与分析
为了验证CPO-VMD算法的有效性,本文选取了多个典型数字信号进行实验,并与传统VMD算法、其他优化算法的VMD方法进行比较。实验结果表明,CPO-VMD算法在以下方面取得了显著的提升:
-
模态数K值选择: CPO-VMD算法能够自动选择最优的模态数,避免了人工调试带来的主观性。
-
惩罚因子α值选择: CPO-VMD算法能够自动选择最优的惩罚因子,提高了信号分解的准确性和可靠性。
-
分解结果质量: CPO-VMD算法得到的模态信号具有更高的信噪比、更好的能量集中度、更低的模态交叉程度,证明了CPO-VMD算法的有效性。
六、结论
本文提出了一种基于冠豪猪算法优化变分模态分解的数字信号分解方法CPO-VMD。该方法通过CHA算法优化VMD的K值和α值,并利用综合指标评估分解结果,取得了良好的效果。实验结果表明,CPO-VMD算法能够有效提高VMD的性能,获得更准确、更可靠的信号分解结果,在实际应用中具有重要的意义。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类