✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 引言
随着全球能源结构调整和环境保护意识的提高,光伏发电作为一种清洁能源,在能源生产中扮演着越来越重要的角色。然而,光伏发电受天气因素影响较大,具有显著的间歇性和波动性,给电力系统的稳定运行和新能源消纳带来了挑战。因此,对光伏发电量进行准确的预测,对于提高光伏发电的利用效率、降低电力系统运行风险具有重要意义。
近年来,深度学习技术在时间序列预测领域取得了显著成果,为光伏发电预测提供了新的思路。例如,循环神经网络 (RNN) 因其在处理时间序列数据方面的优势,被广泛应用于光伏发电预测。然而,RNN 存在梯度消失和长依赖关系捕捉能力不足的缺点。为了解决这些问题,学者们提出了时间卷积网络 (TCN) 和双向门控循环单元 (BiGRU) 等模型。TCN 利用卷积操作来捕捉时间序列数据的长依赖关系,而 BiGRU 则可以提取数据中的双向特征,进一步提升预测精度。
此外,注意力机制 (Attention) 的引入可以有效地突出重要时间段的信息,提升模型对关键特征的学习能力。近年来,白鲨优化算法 (WSO) 作为一种新型优化算法,因其优秀的寻优能力和收敛速度,在深度学习模型优化方面展现出了良好的潜力。
本文提出了一种基于白鲨优化算法WSO优化时间卷积双向门控循环单元融合注意力机制TCN-BiGRU-Attention模型,用于光伏发电数据回归预测。该模型结合了 TCN、BiGRU、Attention 和 WSO 的优势,有效地提高了光伏发电预测的精度和稳定性。
2. 模型结构
2.1 时间卷积网络 (TCN)
TCN 是一种基于卷积操作的时间序列模型,它通过堆叠多层一维卷积层来捕捉时间序列数据的长依赖关系。与传统 RNN 相比,TCN 具有以下优势:
- 并行计算: 卷积操作可以并行计算,提高模型的训练效率。
- 长依赖关系捕捉: 卷积核的大小可以控制模型对时间序列数据的依赖范围,从而有效地捕捉长依赖关系。
- 梯度消失问题: 卷积操作可以避免梯度消失问题,使模型更易于训练。
2.2 双向门控循环单元 (BiGRU)
BiGRU 是门控循环单元 (GRU) 的一种扩展,它将两个方向的 GRU 连接在一起,分别从过去和未来两个方向提取时间序列数据的特征。BiGRU 可以更好地捕捉时间序列数据的双向特征,从而提高预测精度。
2.3 注意力机制 (Attention)
注意力机制可以根据输入序列的特征,学习不同时间段的权重,突出重要时间段的信息。在本文中,我们使用一种基于自注意力机制的机制,根据时间序列数据的特征,学习不同时间点的权重,从而提高模型对关键特征的学习能力。
2.4 白鲨优化算法 (WSO)
WSO 是一种基于自然界白鲨捕食行为的优化算法。它利用白鲨的觅食、追捕和攻击策略,有效地搜索最优解。WSO 具有以下特点:
- 全局搜索能力: WSO 可以有效地搜索解空间,避免陷入局部最优解。
- 收敛速度快: WSO 通常比其他优化算法具有更快的收敛速度。
- 参数少: WSO 只有几个参数,易于实现和调整。
3. 模型训练
3.1 数据准备
首先,我们需要收集光伏发电数据,并进行预处理,包括数据清洗、特征提取和数据标准化等。
3.2 模型训练
使用准备好的数据训练 TCN-BiGRU-Attention 模型。训练过程中,利用白鲨优化算法 (WSO) 来优化模型参数,包括卷积核大小、层数、注意力机制权重等。
4. 模型评估
4.1 评估指标
本文采用均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和决定系数 (R²) 等指标来评估模型的预测性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类