【TCN-BiGRU-Attention回归预测】基于白鲨优化算法WSO优化时间卷积双向门控循环单元融合注意力机制TCN-BiGRU-Attention实现光伏数据回归预测附Matlab代码

    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 引言

随着全球能源结构调整和环境保护意识的提高,光伏发电作为一种清洁能源,在能源生产中扮演着越来越重要的角色。然而,光伏发电受天气因素影响较大,具有显著的间歇性和波动性,给电力系统的稳定运行和新能源消纳带来了挑战。因此,对光伏发电量进行准确的预测,对于提高光伏发电的利用效率、降低电力系统运行风险具有重要意义。

近年来,深度学习技术在时间序列预测领域取得了显著成果,为光伏发电预测提供了新的思路。例如,循环神经网络 (RNN) 因其在处理时间序列数据方面的优势,被广泛应用于光伏发电预测。然而,RNN 存在梯度消失和长依赖关系捕捉能力不足的缺点。为了解决这些问题,学者们提出了时间卷积网络 (TCN) 和双向门控循环单元 (BiGRU) 等模型。TCN 利用卷积操作来捕捉时间序列数据的长依赖关系,而 BiGRU 则可以提取数据中的双向特征,进一步提升预测精度。

此外,注意力机制 (Attention) 的引入可以有效地突出重要时间段的信息,提升模型对关键特征的学习能力。近年来,白鲨优化算法 (WSO) 作为一种新型优化算法,因其优秀的寻优能力和收敛速度,在深度学习模型优化方面展现出了良好的潜力。

本文提出了一种基于白鲨优化算法WSO优化时间卷积双向门控循环单元融合注意力机制TCN-BiGRU-Attention模型,用于光伏发电数据回归预测。该模型结合了 TCN、BiGRU、Attention 和 WSO 的优势,有效地提高了光伏发电预测的精度和稳定性。

2. 模型结构

2.1 时间卷积网络 (TCN)

TCN 是一种基于卷积操作的时间序列模型,它通过堆叠多层一维卷积层来捕捉时间序列数据的长依赖关系。与传统 RNN 相比,TCN 具有以下优势:

  • 并行计算: 卷积操作可以并行计算,提高模型的训练效率。
  • 长依赖关系捕捉: 卷积核的大小可以控制模型对时间序列数据的依赖范围,从而有效地捕捉长依赖关系。
  • 梯度消失问题: 卷积操作可以避免梯度消失问题,使模型更易于训练。

2.2 双向门控循环单元 (BiGRU)

BiGRU 是门控循环单元 (GRU) 的一种扩展,它将两个方向的 GRU 连接在一起,分别从过去和未来两个方向提取时间序列数据的特征。BiGRU 可以更好地捕捉时间序列数据的双向特征,从而提高预测精度。

2.3 注意力机制 (Attention)

注意力机制可以根据输入序列的特征,学习不同时间段的权重,突出重要时间段的信息。在本文中,我们使用一种基于自注意力机制的机制,根据时间序列数据的特征,学习不同时间点的权重,从而提高模型对关键特征的学习能力。

2.4 白鲨优化算法 (WSO)

WSO 是一种基于自然界白鲨捕食行为的优化算法。它利用白鲨的觅食、追捕和攻击策略,有效地搜索最优解。WSO 具有以下特点:

  • 全局搜索能力: WSO 可以有效地搜索解空间,避免陷入局部最优解。
  • 收敛速度快: WSO 通常比其他优化算法具有更快的收敛速度。
  • 参数少: WSO 只有几个参数,易于实现和调整。

3. 模型训练

3.1 数据准备

首先,我们需要收集光伏发电数据,并进行预处理,包括数据清洗、特征提取和数据标准化等。

3.2 模型训练

使用准备好的数据训练 TCN-BiGRU-Attention 模型。训练过程中,利用白鲨优化算法 (WSO) 来优化模型参数,包括卷积核大小、层数、注意力机制权重等。

4. 模型评估

4.1 评估指标

本文采用均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和决定系数 (R²) 等指标来评估模型的预测性能。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值