✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要:光伏发电作为一种清洁、可持续的能源形式,其预测对于电网调度、能源管理等方面至关重要。近年来,Transformer模型因其强大的特征提取能力和非线性映射能力,在时间序列预测领域取得了显著成果。然而,传统的Transformer模型在处理光伏发电时间序列数据时,可能会受到参数敏感性和局部最优解的影响,导致预测精度不足。针对这一问题,本文提出了一种基于鸽群优化算法PIO (Pigeon-Inspired Optimization) 优化Transformer回归模型的光伏预测方法。该方法利用PIO算法优化Transformer模型的超参数,从而提高模型的预测精度。实验结果表明,该方法相比于传统方法,能够有效地提高光伏发电功率预测精度,为光伏电站的稳定运行和高效管理提供了有力支撑。
1. 引言
随着全球能源需求的不断增长以及环境保护意识的提升,光伏发电作为一种清洁、可持续的能源形式,得到了越来越广泛的应用。然而,由于光伏发电受太阳辐射、气象条件等因素的影响,其发电量具有随机性和波动性,难以精确预测。准确预测光伏发电量,对于电网调度、能源管理、电力市场交易等方面至关重要,能够有效提升电力系统运行效率和经济效益。
近年来,深度学习技术在时间序列预测领域取得了显著进展,其中Transformer模型凭借其强大的特征提取能力和非线性映射能力,在光伏发电预测领域展现出巨大的潜力。Transformer模型能够自动学习时间序列数据的特征,并建立时间依赖关系,进而实现对未来数据的准确预测。然而,传统的Transformer模型在处理光伏发电时间序列数据时,可能会受到参数敏感性和局部最优解的影响,导致预测精度不足。
为了解决这一问题,本文提出了一种基于鸽群优化算法PIO (Pigeon-Inspired Optimization) 优化Transformer回归模型的光伏预测方法。PIO算法是一种新型的群智能优化算法,它模拟了鸽子在飞行过程中利用地标导航和地图信息来寻找目标的行为。PIO算法具有较强的全局搜索能力和较快的收敛速度,能够有效地优化Transformer模型的超参数,提升模型的预测精度。
2. 相关工作
近年来,许多研究人员将深度学习技术应用于光伏发电预测领域,取得了一系列成果。其中,常用的模型包括:
- 循环神经网络 (RNN):RNN模型能够有效地处理时间序列数据,但其存在梯度消失问题,难以处理长期依赖关系。
- 长短期记忆网络 (LSTM):LSTM模型通过引入门控机制,解决了RNN模型的梯度消失问题,能够更好地处理长期依赖关系,但在处理复杂的时间序列数据时,其性能仍有待提高。
- 卷积神经网络 (CNN):CNN模型能够提取时间序列数据的局部特征,但其难以捕捉时间依赖关系。
- Transformer模型:Transformer模型通过自注意力机制,能够有效地捕捉时间序列数据的全局特征和长距离依赖关系,在光伏发电预测方面取得了优异的性能。
3. 鸽群优化算法 (PIO)
PIO算法是一种新型的群智能优化算法,它模拟了鸽子在飞行过程中利用地标导航和地图信息来寻找目标的行为。PIO算法主要包含以下三个阶段:
- 地图信息阶段: 鸽子通过观察周围环境,获取地图信息,并根据地图信息进行导航。
- 地标导航阶段: 鸽子通过观察地标,并与地图信息进行匹配,来确定自己的位置和方向。
- 飞行阶段: 鸽子根据地图信息和地标导航信息,进行飞行,最终找到目标。
PIO算法具有以下优点:
- 全局搜索能力强: 鸽子可以通过地图信息和地标导航信息,在整个搜索空间中进行搜索,有效地避免陷入局部最优解。
- 收敛速度快: 鸽子通过地图信息和地标导航信息,能够快速地找到目标,具有较快的收敛速度。
- 参数设置简单: PIO算法的参数设置相对简单,易于实现。
4. 基于PIO优化Transformer回归模型的光伏预测方法
本文提出的方法基于PIO算法优化Transformer回归模型,实现光伏发电功率预测。具体步骤如下:
- 数据预处理: 对原始光伏发电功率数据进行清洗、归一化等预处理,以提高模型训练效率和预测精度。
- Transformer模型构建: 利用Transformer模型搭建回归模型,并设置初始超参数。
- PIO算法优化: 利用PIO算法对Transformer模型的超参数进行优化,包括模型层数、注意力头数、隐藏层维度等。
- 模型训练: 利用优化后的超参数训练Transformer回归模型,并使用训练好的模型进行预测。
结论
本文提出了一种基于PIO算法优化Transformer回归模型的光伏预测方法。该方法利用PIO算法的全局搜索能力和快速收敛速度,优化Transformer模型的超参数,从而提升模型的预测精度。实验结果表明,该方法能够有效地提高光伏发电功率预测精度,为光伏电站的稳定运行和高效管理提供了有力支撑。
未来工作
未来的工作将着重于以下几个方面:
- 研究更有效的超参数优化方法: 探索其他群智能优化算法,例如粒子群优化算法、遗传算法等,进一步提高超参数优化效率。
- 改进Transformer模型结构: 研究更有效的Transformer模型结构,例如引入注意力机制改进、引入多尺度特征提取等,提升模型的预测精度。
- 结合其他数据源: 探索将气象数据、负荷数据等其他数据源与光伏发电数据进行融合,进一步提高预测精度。
⛳️ 运行结果
🔗 参考文献
[1] 刘自然,王煜轩.基于深度卷积GRU的转子系统故障诊断[J].组合机床与自动化加工技术, 2023(1):101-104.
[2] 王力,李志新,张亦弛.基于红外的SSA-CNN-GRU电路板芯片故障诊断[J].激光与红外, 2023, 53(4):556-565.
[3] 张龙,甄灿壮,易剑昱,等.双通道特征融合CNN-GRU齿轮箱故障诊断[J].振动与冲击, 2021, 40(19):8.DOI:10.13465/j.cnki.jvs.2021.19.030.
[4] 周涛涛,张冬,原宗,等.一种基于GRU的旋转机械故障诊断方法:CN202011355499.X[P].CN112488179A[2024-07-13].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类