✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 引言
置换流水车间调度问题 (Permutation Flow Shop Scheduling Problem, PFSP) 作为经典的组合优化问题,在生产制造、物流运输等领域有着广泛应用。PFSP 的目标是在最小化总完工时间 (Makespan) 的前提下,确定所有工件在各工序上的加工顺序。由于 PFSP 属于 NP-hard 问题,随着工件数和工序数的增加,其求解难度会急剧增加,因此寻求高效的求解算法至关重要。
阿基米德优化算法 (Archimedes Optimization Algorithm, AOA) 是一种新兴的元启发式算法,其灵感来源于古希腊数学家阿基米德关于杠杆原理的发现。AOA 算法通过模拟杠杆的平衡原理,对解空间进行高效搜索,并利用解的质量来引导搜索方向。
本文将基于 AOA 算法,针对 PFSP 问题,提出一种新的求解方法,并通过实验验证其有效性。
2. 问题描述
PFSP 问题可描述为:有 n 个工件需要在 m 个工序上加工,每个工件都按照相同的工序顺序进行加工,每个工序只能加工一个工件,并且每个工件在同一时间只能在一个工序上进行加工。假设第 i 个工件在第 j 个工序上的加工时间为 𝑝𝑖𝑗pij,则 PFSP 问题的目标是找到一种工件加工顺序,使得所有工件的总完工时间最小。
3. 阿基米德优化算法 (AOA)
AOA 算法是一种基于种群的元启发式算法,其主要步骤如下:
-
**初始化种群:**随机生成 N 个初始解,每个解对应一种工件加工顺序。
-
**计算适应度:**根据每个解的总完工时间,计算其适应度值。
-
**杠杆平衡:**将每个解看作一个杠杆,其适应度值对应杠杆的质量。通过调整解的顺序,使得杠杆达到平衡状态。
-
**更新解:**根据杠杆平衡后的状态,更新每个解的顺序,并产生新的解。
-
**重复步骤 2-4,**直到满足停止条件。
4. 基于 AOA 求解 PFSP 问题
基于 AOA 求解 PFSP 问题的具体步骤如下:
-
**编码:**将工件加工顺序编码为一个排列,例如:工件 1、工件 2、工件 3 编码为 [1, 2, 3]。
-
**初始化种群:**随机生成 N 个排列,作为 AOA 算法的初始种群。
-
**计算适应度:**根据每个排列,计算其对应的总完工时间,作为适应度值。
-
杠杆平衡:
-
将每个排列看作一个杠杆,其适应度值对应杠杆的质量。
-
通过调整排列中相邻两个工件的位置,使得杠杆达到平衡状态。
-
杠杆平衡的标准是:相邻两个工件的加工时间之差小于一个预设阈值。
-
-
更新解:
-
对每个排列,根据杠杆平衡后的状态,更新其工件顺序。
-
通过对排列进行随机扰动,产生新的排列,并加入到种群中。
-
-
**重复步骤 3-5,**直到满足停止条件,例如:达到最大迭代次数或连续一定次数的迭代没有找到更优解。
5. 实验结果与分析
为了验证 AOA 算法的有效性,我们在标准 PFSP 测试集上进行实验。实验结果表明,AOA 算法能够有效地求解 PFSP 问题,并取得了较好的解质量。与其他元启发式算法相比,AOA 算法在求解精度和收敛速度方面表现出一定的优势。
6. 结论
本文提出了一种基于 AOA 算法求解 PFSP 问题的方案,并通过实验验证了其有效性。实验结果表明,AOA 算法能够有效地求解 PFSP 问题,并取得了较好的解质量。未来将继续研究 AOA 算法的改进方法,以进一步提高其求解精度和效率。
⛳️ 运行结果
📣 部分代码
% number of neurons in the layers of the encoder
defaultNeuronsEncoder=[50,20];
% number of neurons in the layers of the decoder
defaultNeuronsDecoder=[30];
% dimension of the latent space
defaultLatentDim=2;
% number of epochs (runs through the training set) during training
defaultNumberEpoch=10;
% number of features passed to the network -> automatically adjusted when
% the training data is passed to the network when calling the training
% function trainAED()
defaultNumberFeature=1;
% initial learning rate used for the training with the adamupdate
% (adaptive momentum estimation - adaptive learning rate)
defaultLearningRate=0.05;
% size of a mini-batch during training - number of samples which is passed
% through the network before a gradient step is done
defaultMiniBatchSize=15;
% environment on which the learning is executed - auto - it is checked if
% hardware for gpu-learning is available if not the learning is executed on
% the cpu
defaultExecutionenvirionment='auto';
% which types of layers are used in the encoder
defaultLayersEncoder={'FC','LSTM'};
% which types of layers are used in the decoder
defaultLayersDecoder={'LSTM'};
% type of latent space
defaultAutoencoderType='VAE';
% output transfer function - function which is applied on the outputs of
% the decoder
defaultOutputTransferFunction='none';
% conditional hyperparameter - only added to the struct when the
% AutoencoderType=='VAE'
% lambda - weigthing of the Kullback-Leibler-term of the cost function of
% the variatonal autoencoder
defaultWeightingKL=1;
% create the fields of the struct and assign the pre-defined default
% values
defaultStruct.AutoencoderType=defaultAutoencoderType;
defaultStruct.LayersEncoder=defaultLayersEncoder;
defaultStruct.LayersDecoder=defaultLayersDecoder;
defaultStruct.NeuronsEncoder=defaultNeuronsEncoder;
defaultStruct.NeuronsDecoder=defaultNeuronsDecoder;
defaultStruct.LatentDim=defaultLatentDim;
defaultStruct.NumberEpoch=defaultNumberEpoch;
defaultStruct.NumberFeature=defaultNumberFeature;
defaultStruct.LearningRate=defaultLearningRate;
defaultStruct.MiniBatchSize=defaultMiniBatchSize;
defaultStruct.ExecutionEnvironment=defaultExecutionenvirionment;
defaultStruct.WeightingKL=defaultWeightingKL;
defaultStruct.OutputTransferFunction=defaultOutputTransferFunction;
🔗 参考文献
[1] 王书婷.基于遗传变邻域算法的置换流水车间调度问题研究[D].华中科技大学[2024-07-19].
[2] 于承敏,郑丽萍.PSO算法求解PFSP问题研究进展[J].哈尔滨理工大学学报, 2012, 17(6):7.DOI:10.3969/j.issn.1007-2683.2012.06.003.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类