✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
电力负荷预测是电力系统运行和管理的重要组成部分,准确的负荷预测可以有效地提高电网的安全性和经济性。随着电力系统规模不断扩大,负荷数据呈现出非线性、复杂性等特点,传统的预测模型难以满足实际需求。近年来,深度学习技术在电力负荷预测领域取得了显著进展,其中Transformer和BiLSTM等模型在处理时间序列数据方面展现出优异性能。然而,深度学习模型往往需要大量的训练数据和复杂的参数调优,这对于实际应用存在一定困难。黑猩猩优化算法 (Chimp Optimization Algorithm, Chimp) 作为一种新型的元启发式算法,具有收敛速度快、全局搜索能力强等优点,可用于优化深度学习模型的超参数,提高预测精度。
本文提出了一种基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型。该模型首先利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。然后,使用Chimp算法对Transformer-BiLSTM模型的超参数进行优化,以获得最优模型结构和参数配置。最后,利用实际负荷数据对模型进行训练和测试,并与其他传统方法进行比较,验证了模型的有效性和优越性。
关键词: 电力负荷预测,Transformer,BiLSTM,黑猩猩优化算法,回归预测
1. 概述
电力负荷预测是电力系统运行和管理的重要组成部分,其准确性直接影响着电网的安全性和经济性。随着电力系统规模不断扩大,负荷数据呈现出非线性、复杂性等特点,传统的预测模型难以满足实际需求。近年来,深度学习技术在电力负荷预测领域取得了显著进展,其中Transformer和BiLSTM等模型在处理时间序列数据方面展现出优异性能。
1.1 Transformer模型
Transformer模型是一种基于自注意力机制的深度学习模型,最初用于自然语言处理领域。Transformer模型能够有效地捕捉时间序列数据的长期依赖关系,并展现出优异的预测性能。
1.2 BiLSTM模型
BiLSTM模型是一种双向长短期记忆网络,能够学习时间序列数据的双向依赖关系,提高预测精度。BiLSTM模型能够有效地捕捉负荷数据的短期依赖关系,并结合Transformer模型的长期依赖关系建模能力,实现更高效的负荷预测。
1.3 黑猩猩优化算法
黑猩猩优化算法 (Chimp Optimization Algorithm, Chimp) 是一种新型的元启发式算法,模拟了黑猩猩群体觅食的行为。Chimp算法具有收敛速度快、全局搜索能力强等优点,可用于优化深度学习模型的超参数,提高预测精度。
2. 模型设计
本文提出的基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型主要包含以下几个步骤:
-
数据预处理: 对原始负荷数据进行清洗、预处理,以消除噪声和异常值,并将其转化为模型可接受的格式。
-
特征提取: 利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。
-
超参数优化: 使用Chimp算法对Transformer-BiLSTM模型的超参数进行优化,包括Transformer模型的层数、注意力头数、BiLSTM模型的隐藏层单元数量等。
-
模型训练: 利用训练数据对优化后的Transformer-BiLSTM模型进行训练,并根据训练结果调整模型参数,提高预测精度。
-
模型测试: 利用测试数据对训练好的模型进行测试,并与其他传统方法进行比较,验证模型的有效性和优越性。
3. 模型实现
本文使用Matlab软件实现提出的负荷数据回归预测模型。
3.1 数据集
本文使用某地区历史负荷数据作为训练数据集,并将其分为训练集、验证集和测试集。
3.2 代码实现
% 数据预处理
% ...
% 定义Transformer模型
% ...
% 定义BiLSTM模型
% ...
% 定义Chimp算法
% ...
% 超参数优化
% ...
% 模型训练
% ...
% 模型测试
% ...
4. 实验结果
本文将提出的模型与其他传统方法进行了对比,包括ARIMA模型、SVM模型等,结果表明:
-
基于Chimp优化Transformer-BiLSTM的模型在预测精度方面明显优于其他传统方法。
-
模型对负荷数据的非线性、复杂性等特点具有较强的适应能力。
-
Chimp算法可以有效地优化Transformer-BiLSTM模型的超参数,提高模型的预测精度。
5. 结论
本文提出了一种基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型,该模型利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。Chimp算法的引入有效地优化了模型的超参数,提高了模型的预测精度。实验结果表明,该模型在预测精度方面明显优于其他传统方法,具有良好的实用价值。
6. 未来工作
未来工作将重点关注以下几个方面:
-
进一步研究和优化模型结构,提高模型的预测精度。
-
将模型扩展到其他时间序列数据预测领域,例如风电功率预测、太阳能发电预测等。
-
研究如何将模型与其他算法结合,实现更加高效的预测。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类