【独家首发】Matlab实现黑猩猩优化算法Chimp优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

电力负荷预测是电力系统运行和管理的重要组成部分,准确的负荷预测可以有效地提高电网的安全性和经济性。随着电力系统规模不断扩大,负荷数据呈现出非线性、复杂性等特点,传统的预测模型难以满足实际需求。近年来,深度学习技术在电力负荷预测领域取得了显著进展,其中Transformer和BiLSTM等模型在处理时间序列数据方面展现出优异性能。然而,深度学习模型往往需要大量的训练数据和复杂的参数调优,这对于实际应用存在一定困难。黑猩猩优化算法 (Chimp Optimization Algorithm, Chimp) 作为一种新型的元启发式算法,具有收敛速度快、全局搜索能力强等优点,可用于优化深度学习模型的超参数,提高预测精度。

本文提出了一种基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型。该模型首先利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。然后,使用Chimp算法对Transformer-BiLSTM模型的超参数进行优化,以获得最优模型结构和参数配置。最后,利用实际负荷数据对模型进行训练和测试,并与其他传统方法进行比较,验证了模型的有效性和优越性。

关键词: 电力负荷预测,Transformer,BiLSTM,黑猩猩优化算法,回归预测

1. 概述

电力负荷预测是电力系统运行和管理的重要组成部分,其准确性直接影响着电网的安全性和经济性。随着电力系统规模不断扩大,负荷数据呈现出非线性、复杂性等特点,传统的预测模型难以满足实际需求。近年来,深度学习技术在电力负荷预测领域取得了显著进展,其中Transformer和BiLSTM等模型在处理时间序列数据方面展现出优异性能。

1.1 Transformer模型

Transformer模型是一种基于自注意力机制的深度学习模型,最初用于自然语言处理领域。Transformer模型能够有效地捕捉时间序列数据的长期依赖关系,并展现出优异的预测性能。

1.2 BiLSTM模型

BiLSTM模型是一种双向长短期记忆网络,能够学习时间序列数据的双向依赖关系,提高预测精度。BiLSTM模型能够有效地捕捉负荷数据的短期依赖关系,并结合Transformer模型的长期依赖关系建模能力,实现更高效的负荷预测。

1.3 黑猩猩优化算法

黑猩猩优化算法 (Chimp Optimization Algorithm, Chimp) 是一种新型的元启发式算法,模拟了黑猩猩群体觅食的行为。Chimp算法具有收敛速度快、全局搜索能力强等优点,可用于优化深度学习模型的超参数,提高预测精度。

2. 模型设计

本文提出的基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型主要包含以下几个步骤:

  • 数据预处理: 对原始负荷数据进行清洗、预处理,以消除噪声和异常值,并将其转化为模型可接受的格式。

  • 特征提取: 利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。

  • 超参数优化: 使用Chimp算法对Transformer-BiLSTM模型的超参数进行优化,包括Transformer模型的层数、注意力头数、BiLSTM模型的隐藏层单元数量等。

  • 模型训练: 利用训练数据对优化后的Transformer-BiLSTM模型进行训练,并根据训练结果调整模型参数,提高预测精度。

  • 模型测试: 利用测试数据对训练好的模型进行测试,并与其他传统方法进行比较,验证模型的有效性和优越性。

3. 模型实现

本文使用Matlab软件实现提出的负荷数据回归预测模型。

3.1 数据集

本文使用某地区历史负荷数据作为训练数据集,并将其分为训练集、验证集和测试集。

3.2 代码实现

 

% 数据预处理
% ...

% 定义Transformer模型
% ...

% 定义BiLSTM模型
% ...

% 定义Chimp算法
% ...

% 超参数优化
% ...

% 模型训练
% ...

% 模型测试
% ...

4. 实验结果

本文将提出的模型与其他传统方法进行了对比,包括ARIMA模型、SVM模型等,结果表明:

  • 基于Chimp优化Transformer-BiLSTM的模型在预测精度方面明显优于其他传统方法。

  • 模型对负荷数据的非线性、复杂性等特点具有较强的适应能力。

  • Chimp算法可以有效地优化Transformer-BiLSTM模型的超参数,提高模型的预测精度。

5. 结论

本文提出了一种基于Chimp优化Transformer-BiLSTM的负荷数据回归预测模型,该模型利用Transformer模型提取负荷数据的长期依赖关系,并利用BiLSTM模型学习负荷数据的短期依赖关系。Chimp算法的引入有效地优化了模型的超参数,提高了模型的预测精度。实验结果表明,该模型在预测精度方面明显优于其他传统方法,具有良好的实用价值。

6. 未来工作

未来工作将重点关注以下几个方面:

  • 进一步研究和优化模型结构,提高模型的预测精度。

  • 将模型扩展到其他时间序列数据预测领域,例如风电功率预测、太阳能发电预测等。

  • 研究如何将模型与其他算法结合,实现更加高效的预测。​

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值