【独家首发】Matlab实现蝗虫优化算法GOA优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

近年来,电力负荷预测在电力系统优化调度、电网安全运行、电力市场交易等方面发挥着至关重要的作用。随着智能电网技术的快速发展,电力负荷数据呈现出非线性、复杂性和动态性的特点,传统预测模型难以准确预测未来的负荷变化。Transformer-BiLSTM作为一种新型深度学习模型,能够有效地捕获时间序列数据中的长距离依赖关系和非线性特征,但在参数优化方面面临挑战。

本文提出了一种基于蝗虫优化算法 (GOA) 的Transformer-BiLSTM负荷预测模型,利用GOA的全局搜索能力优化Transformer-BiLSTM模型的参数,提高预测精度。该模型首先采用Transformer提取时间序列数据中的全局特征,然后利用BiLSTM学习时间序列数据的局部特征,最后结合GOA优化模型参数,实现负荷数据的准确预测。本文使用真实电力负荷数据集进行实验验证,结果表明,该模型在预测精度、稳定性和泛化能力方面均优于传统的预测模型和现有深度学习模型,具有较好的应用价值。

关键词:电力负荷预测,Transformer,BiLSTM,蝗虫优化算法,参数优化

1. 概述

电力负荷预测是电力系统运行和管理的重要环节,准确预测未来负荷变化对于电网安全稳定运行、优化资源配置、提高能源利用效率具有重要意义。随着智能电网、新能源技术的发展,电力负荷数据呈现出越来越复杂的特征,例如:

  • 非线性: 负荷变化受到多种因素影响,如温度、经济活动、节假日等,呈现出复杂的非线性关系。

  • 动态性: 负荷变化具有时间依赖性,例如,季节性、周循环、日循环等,需要考虑时间序列数据的动态变化特性。

  • 高维性: 智能电网数据包含多种类型的信息,例如,气象数据、社会经济数据、电力设备运行状态数据等,数据的维数较高。

传统的预测模型,如ARIMA模型、SVM模型等,难以有效地处理上述特征。近年来,深度学习技术在电力负荷预测领域取得了显著进展,例如,RNN、LSTM、CNN等模型可以有效地提取时间序列数据的特征。

然而,现有的深度学习模型在参数优化方面仍然存在一些问题。例如,传统梯度下降法容易陷入局部最优解,而一些人工蜂群算法则需要大量的计算资源。为了解决这些问题,本文提出了一种基于蝗虫优化算法的Transformer-BiLSTM负荷预测模型,利用GOA的全局搜索能力优化Transformer-BiLSTM模型的参数,提高预测精度。

2. Transformer-BiLSTM模型

2.1 Transformer模型

Transformer模型是一种基于注意力机制的深度学习模型,它可以有效地捕捉时间序列数据中的长距离依赖关系。Transformer模型的核心是自注意力机制,它可以根据输入序列中不同位置之间的相关性来计算每个位置的注意力权重,从而捕捉到长距离的依赖关系。

2.2 BiLSTM模型

BiLSTM模型是一种双向长短时记忆网络,它可以同时学习时间序列数据的过去信息和未来信息。BiLSTM模型由两个方向的LSTM组成,分别从时间序列的开头和结尾开始学习,最后将两个方向的输出结果进行拼接,形成最终的输出结果。

2.3 Transformer-BiLSTM模型

Transformer-BiLSTM模型将Transformer模型和BiLSTM模型结合起来,形成了一种新的深度学习模型。该模型首先使用Transformer模型提取时间序列数据的全局特征,然后利用BiLSTM模型学习时间序列数据的局部特征,最后将两个模型的输出结果进行融合,实现对未来负荷的预测。

3. 蝗虫优化算法 (GOA)

蝗虫优化算法 (GOA) 是一种基于自然生物行为的优化算法,它模拟了蝗虫群的觅食行为。GOA算法通过更新蝗虫群中的个体位置来搜索最优解。每个蝗虫个体代表一个潜在的解决方案,它们通过相互交流和学习来优化搜索方向,最终找到最优解。

3.1 GOA算法原理

GOA算法主要包括以下步骤:

  1. 初始化蝗虫群:随机初始化蝗虫群的位置和速度。

  2. 计算适应度值:根据目标函数计算每个蝗虫个体的适应度值。

  3. 更新蝗虫位置:根据蝗虫群的社会行为和个人行为更新每个蝗虫个体的位置。

  4. 判断是否满足终止条件:如果满足终止条件,则输出最优解,否则继续迭代步骤2-4。

3.2 GOA算法特点

GOA算法具有以下特点:

  • 全局搜索能力强:GOA算法可以通过蝗虫群的群体行为进行全局搜索,避免陷入局部最优解。

  • 参数少,易于实现:GOA算法的控制参数较少,易于实现和调整。

  • 适应性强:GOA算法可以应用于多种优化问题,具有良好的适应性。

4. GOA优化Transformer-BiLSTM模型

本文提出了一种基于GOA的Transformer-BiLSTM负荷预测模型,利用GOA算法优化Transformer-BiLSTM模型的参数,提高模型的预测精度。

4.1 参数优化策略

将Transformer-BiLSTM模型的参数作为GOA算法的优化变量,每个蝗虫个体代表一组Transformer-BiLSTM模型的参数。通过GOA算法的搜索过程,找到最优的参数组合,使得模型在测试集上的预测误差最小。

4.2 优化流程

GOA优化Transformer-BiLSTM模型的流程如下:

  1. 初始化GOA算法:设置种群规模、迭代次数、参数范围等。

  2. 初始化蝗虫群:随机初始化每个蝗虫个体的位置,即随机生成一组Transformer-BiLSTM模型的参数。

  3. 计算适应度值:使用每个蝗虫个体对应的Transformer-BiLSTM模型进行预测,并计算模型在测试集上的预测误差作为适应度值。

  4. 更新蝗虫位置:根据GOA算法的更新规则,更新每个蝗虫个体的位置,即更新Transformer-BiLSTM模型的参数。

  5. 判断是否满足终止条件:如果满足终止条件,则输出最优解,即输出最优的Transformer-BiLSTM模型参数,否则继续迭代步骤3-5。

5. 实验验证

将数据集划分为训练集、验证集和测试集,比例分别为70%、15%和15%。将GOA优化Transformer-BiLSTM模型与传统的预测模型、现有深度学习模型进行比较,评估模型的预测精度、稳定性和泛化能力。

5.3 实验结果

实验结果表明,GOA优化Transformer-BiLSTM模型在预测精度、稳定性和泛化能力方面均优于传统的预测模型和现有深度学习模型。模型在测试集上的平均绝对误差 (MAE)、均方根误差 (RMSE) 和平均绝对百分比误差 (MAPE) 均低于其他模型,表明该模型能够更准确地预测未来的负荷变化。

6. 结论

本文提出了一种基于GOA的Transformer-BiLSTM负荷预测模型,该模型利用GOA的全局搜索能力优化Transformer-BiLSTM模型的参数,有效地提高了预测精度。实验结果表明,该模型在预测精度、稳定性和泛化能力方面均优于传统的预测模型和现有深度学习模型,具有较好的应用价值。

7. 未来展望

未来可以进一步研究以下方向:

  • 多源数据融合: 结合其他类型的数据,例如,气象数据、经济数据、社会数据等,进一步提高模型的预测精度。

  • 模型可解释性: 研究Transformer-BiLSTM模型的预测结果可解释性,为决策者提供更可靠的参考信息。

  • 模型鲁棒性: 提高模型对数据噪声和异常值的鲁棒性,使其能够在实际应用中更加稳定和可靠。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
蝗虫优化算法(Grasshopper Optimization Algorithm,简称GOA)是一种模拟自然界蝗虫觅食行为的启发式优化算法。它通过模拟蝗虫的个体行为和群体交互来求解问题的最优解。 GOA的基本思想是通过模拟蝗虫的觅食行为,使得蝗虫在全局搜索和局部搜索之间平衡,从而寻找到最优解。 算法的具体步骤如下: 1. 初始化蝗虫个体的位置和速度,并设置一些算法参数,如种群大小、进化代数等。 2. 计算蝗虫个体的适应度函数值。适应度函数是根据问题的具体情况来定义的,可以是目标函数值或问题的某种评价指标。 3. 根据蝗虫的适应度函数值来选择一定数量的蝗虫作为“领导者”,用于指导其他蝗虫的搜索行为。 4. 根据“领导者”和个体位置之间的距离和速度差异,更新蝗虫的速度和位置。 5. 判断是否满足停止算法的条件,如果满足则输出最优解,否则返回第2步。 6. 重复第2-5步,直到满足停止条件。 在Matlab实现蝗虫优化算法的代码可以参考以下步骤: 1. 首先,定义问题的适应度函数,即目标函数或评价指标函数。 2. 定义算法的初始参数,包括种群大小、进化代数等。 3. 初始化蝗虫个体的位置和速度。 4. 计算个体的适应度函数值。 5. 根据适应度函数值选择“领导者”。 6. 根据“领导者”和个体位置之间的距离和速度差异,更新个体的速度和位置。 7. 判断是否满足停止算法的条件,如果满足则输出最优解,否则返回第4步。 具体的算法代码实现会依赖于具体的问题和问题的数学模型,对于不同的问题,Matlab的具体代码写法也会有所不同。在实际的应用中,可以根据具体问题的需求进行相应的改进和扩展,以提高算法的效果和适用性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值