【独家首发】Matlab实现金枪鱼优化算法TSO优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要: 负荷预测是电力系统运行和调度的重要环节,准确的负荷预测可以提高电力系统效率,降低运行成本,并确保电力供应的可靠性。近年来,随着深度学习技术的快速发展,基于深度学习的负荷预测模型得到了广泛应用。本文提出了一种基于金枪鱼优化算法TSO优化的Transformer-BiLSTM模型,用于负荷数据回归预测。该模型利用Transformer的全局特征提取能力和BiLSTM的时序特征提取能力,有效地提取负荷数据中的时空特征,并通过TSO算法对模型参数进行优化,提升了模型的预测精度。实验结果表明,该模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。

关键词: 负荷预测,金枪鱼优化算法,Transformer,BiLSTM,回归预测

1. 引言

电力负荷预测是电力系统运行和调度的重要基础。准确的负荷预测可以帮助电力公司制定有效的运行策略,提高能源利用效率,降低运营成本,并确保电力供应的可靠性。随着电力系统规模的不断扩大,负荷预测变得越来越复杂,传统的预测方法难以满足现代电力系统的需求。

近年来,深度学习技术在负荷预测领域取得了显著的进展,基于深度学习的负荷预测模型因其强大的特征提取能力和预测精度而备受关注。其中,Transformer和BiLSTM是两种常用的深度学习模型,它们在处理序列数据方面具有独特的优势。Transformer可以有效地捕捉序列数据的全局特征,而BiLSTM则擅长捕捉序列数据的时序特征。

然而,现有的基于Transformer和BiLSTM的负荷预测模型存在一些不足,例如:

  • 模型参数难以优化,导致模型的预测精度有限;

  • 模型对不同数据集的泛化能力较差;

为了解决上述问题,本文提出了一种基于金枪鱼优化算法TSO优化的Transformer-BiLSTM模型,该模型可以有效地提取负荷数据的时空特征,并通过TSO算法对模型参数进行优化,提升模型的预测精度和泛化能力。

2. 相关工作

负荷预测领域的研究已取得了重大进展,现有的负荷预测方法主要包括传统方法和深度学习方法。

2.1 传统方法

传统负荷预测方法主要包括以下几种:

  • 统计方法: 包括回归分析、时间序列分析、ARIMA模型等,主要利用历史数据进行拟合和预测。

  • 物理模型: 通过建立电力系统模型,模拟电力负荷的动态变化过程,进而进行预测。

  • 专家经验: 利用专家经验和知识,对负荷进行预测。

2.2 深度学习方法

近年来,深度学习技术在负荷预测领域得到了广泛应用,基于深度学习的负荷预测模型主要包括以下几种:

  • 循环神经网络(RNN): 包括LSTM、GRU等,擅长处理序列数据,能够捕捉数据的时间依赖关系。

  • 卷积神经网络(CNN): 擅长提取数据的空间特征,可以有效地捕捉负荷数据的空间分布信息。

  • Transformer: 利用自注意力机制,可以有效地提取序列数据的全局特征。

3. 模型设计

本文提出的基于TSO优化的Transformer-BiLSTM模型,其结构如图1所示。

[插入模型结构图]

图 1. 基于TSO优化的Transformer-BiLSTM模型结构

该模型主要由以下几个模块组成:

  • Transformer模块: 利用Transformer的全局特征提取能力,捕捉负荷数据的时间和空间特征。

  • BiLSTM模块: 利用BiLSTM的时序特征提取能力,捕捉负荷数据的时间依赖关系。

  • 全连接层: 对模型输出进行回归预测。

  • TSO优化算法: 对模型参数进行优化,提升模型的预测精度。

3.1 Transformer模块

Transformer模块采用多头注意力机制,可以有效地提取序列数据的全局特征。该模块包含编码器和解码器,编码器将输入序列编码成特征向量,解码器则根据编码器输出进行解码,并生成预测结果。

3.2 BiLSTM模块

BiLSTM模块可以有效地提取序列数据的时序特征。该模块使用双向LSTM网络,能够同时学习过去和未来信息,从而更好地捕捉时间依赖关系。

3.3 TSO优化算法

TSO算法是一种基于群体智能的优化算法,该算法模拟了金枪鱼群体在海洋中的觅食行为。TSO算法具有以下特点:

  • 能够有效地搜索最优解,并避免陷入局部最优解;

  • 算法结构简单,易于实现;

  • 算法参数少,易于调整。

在本文中,TSO算法用于优化Transformer-BiLSTM模型的参数,提高模型的预测精度。

4. 实验结果

实验结果表明,本文提出的模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。

5. 结论

本文提出了一种基于TSO优化的Transformer-BiLSTM模型,用于负荷数据回归预测。该模型利用Transformer的全局特征提取能力和BiLSTM的时序特征提取能力,有效地提取负荷数据中的时空特征,并通过TSO算法对模型参数进行优化,提升了模型的预测精度和泛化能力。实验结果表明,该模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。

6. 未来展望

未来,我们将继续研究基于深度学习的负荷预测方法,并尝试以下方向:

  • 探索更多有效的深度学习模型,进一步提升负荷预测精度;

  • 研究基于多源数据的负荷预测方法,充分利用电力系统中的各种信息进行预测;

  • 研究负荷预测模型的可解释性,提高模型的透明度和可信度。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值