✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 负荷预测是电力系统运行和调度的重要环节,准确的负荷预测可以提高电力系统效率,降低运行成本,并确保电力供应的可靠性。近年来,随着深度学习技术的快速发展,基于深度学习的负荷预测模型得到了广泛应用。本文提出了一种基于金枪鱼优化算法TSO优化的Transformer-BiLSTM模型,用于负荷数据回归预测。该模型利用Transformer的全局特征提取能力和BiLSTM的时序特征提取能力,有效地提取负荷数据中的时空特征,并通过TSO算法对模型参数进行优化,提升了模型的预测精度。实验结果表明,该模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。
关键词: 负荷预测,金枪鱼优化算法,Transformer,BiLSTM,回归预测
1. 引言
电力负荷预测是电力系统运行和调度的重要基础。准确的负荷预测可以帮助电力公司制定有效的运行策略,提高能源利用效率,降低运营成本,并确保电力供应的可靠性。随着电力系统规模的不断扩大,负荷预测变得越来越复杂,传统的预测方法难以满足现代电力系统的需求。
近年来,深度学习技术在负荷预测领域取得了显著的进展,基于深度学习的负荷预测模型因其强大的特征提取能力和预测精度而备受关注。其中,Transformer和BiLSTM是两种常用的深度学习模型,它们在处理序列数据方面具有独特的优势。Transformer可以有效地捕捉序列数据的全局特征,而BiLSTM则擅长捕捉序列数据的时序特征。
然而,现有的基于Transformer和BiLSTM的负荷预测模型存在一些不足,例如:
-
模型参数难以优化,导致模型的预测精度有限;
-
模型对不同数据集的泛化能力较差;
为了解决上述问题,本文提出了一种基于金枪鱼优化算法TSO优化的Transformer-BiLSTM模型,该模型可以有效地提取负荷数据的时空特征,并通过TSO算法对模型参数进行优化,提升模型的预测精度和泛化能力。
2. 相关工作
负荷预测领域的研究已取得了重大进展,现有的负荷预测方法主要包括传统方法和深度学习方法。
2.1 传统方法
传统负荷预测方法主要包括以下几种:
-
统计方法: 包括回归分析、时间序列分析、ARIMA模型等,主要利用历史数据进行拟合和预测。
-
物理模型: 通过建立电力系统模型,模拟电力负荷的动态变化过程,进而进行预测。
-
专家经验: 利用专家经验和知识,对负荷进行预测。
2.2 深度学习方法
近年来,深度学习技术在负荷预测领域得到了广泛应用,基于深度学习的负荷预测模型主要包括以下几种:
-
循环神经网络(RNN): 包括LSTM、GRU等,擅长处理序列数据,能够捕捉数据的时间依赖关系。
-
卷积神经网络(CNN): 擅长提取数据的空间特征,可以有效地捕捉负荷数据的空间分布信息。
-
Transformer: 利用自注意力机制,可以有效地提取序列数据的全局特征。
3. 模型设计
本文提出的基于TSO优化的Transformer-BiLSTM模型,其结构如图1所示。
[插入模型结构图]
图 1. 基于TSO优化的Transformer-BiLSTM模型结构
该模型主要由以下几个模块组成:
-
Transformer模块: 利用Transformer的全局特征提取能力,捕捉负荷数据的时间和空间特征。
-
BiLSTM模块: 利用BiLSTM的时序特征提取能力,捕捉负荷数据的时间依赖关系。
-
全连接层: 对模型输出进行回归预测。
-
TSO优化算法: 对模型参数进行优化,提升模型的预测精度。
3.1 Transformer模块
Transformer模块采用多头注意力机制,可以有效地提取序列数据的全局特征。该模块包含编码器和解码器,编码器将输入序列编码成特征向量,解码器则根据编码器输出进行解码,并生成预测结果。
3.2 BiLSTM模块
BiLSTM模块可以有效地提取序列数据的时序特征。该模块使用双向LSTM网络,能够同时学习过去和未来信息,从而更好地捕捉时间依赖关系。
3.3 TSO优化算法
TSO算法是一种基于群体智能的优化算法,该算法模拟了金枪鱼群体在海洋中的觅食行为。TSO算法具有以下特点:
-
能够有效地搜索最优解,并避免陷入局部最优解;
-
算法结构简单,易于实现;
-
算法参数少,易于调整。
在本文中,TSO算法用于优化Transformer-BiLSTM模型的参数,提高模型的预测精度。
4. 实验结果
实验结果表明,本文提出的模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。
5. 结论
本文提出了一种基于TSO优化的Transformer-BiLSTM模型,用于负荷数据回归预测。该模型利用Transformer的全局特征提取能力和BiLSTM的时序特征提取能力,有效地提取负荷数据中的时空特征,并通过TSO算法对模型参数进行优化,提升了模型的预测精度和泛化能力。实验结果表明,该模型在不同数据集上的预测精度均优于传统方法,并具有较好的泛化能力。
6. 未来展望
未来,我们将继续研究基于深度学习的负荷预测方法,并尝试以下方向:
-
探索更多有效的深度学习模型,进一步提升负荷预测精度;
-
研究基于多源数据的负荷预测方法,充分利用电力系统中的各种信息进行预测;
-
研究负荷预测模型的可解释性,提高模型的透明度和可信度。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类