【土木】计算简支或铰接铰接梁的振型和固有频率附matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

简支梁和铰接铰接梁是土木工程中常见的结构构件,其动力特性,特别是振型和固有频率,对于结构的抗震设计和动力响应分析至关重要。准确计算这些参数是确保结构安全可靠的关键。本文将详细阐述如何利用有限元法计算简支梁和铰接铰接梁的振型和固有频率,并提供相应的Matlab代码实现。

一、理论基础

梁的振动问题可以利用振动微分方程进行描述。对于一根均匀的梁,其横向振动方程为:

EI ∂⁴y(x,t) / ∂x⁴ + ρA ∂²y(x,t) / ∂t² = 0

其中:

  • EI 为梁的弯曲刚度,E为弹性模量,I为截面惯性矩;

  • ρ 为材料密度;

  • A 为梁的截面积;

  • y(x,t) 为梁在位置x和时间t的挠度。

为了求解该方程,需要考虑边界条件。简支梁的边界条件为:在梁的两端,挠度y(x,t) = 0,弯矩EI ∂²y(x,t) / ∂x² = 0。铰接铰接梁的边界条件为:在梁的两端,挠度y(x,t) = 0,剪力EI ∂³y(x,t) / ∂x³ = 0。

通过分离变量法,可以将振动方程解为:

y(x,t) = Y(x)T(t)

代入振动方程,得到两个常微分方程:

EI Y''''(x) - ω²ρA Y(x) = 0

T''(t) + ω²T(t) = 0

其中,ω为角频率,与固有频率f的关系为 ω = 2πf。

第一个方程是关于空间坐标x的特征值问题,其解对应于梁的振型Y(x),而ω²是特征值,与固有频率平方成正比。 不同边界条件下,特征值和特征函数的解法不同,需要根据边界条件求解相应的微分方程。

二、有限元法求解

对于复杂的梁结构或非均匀梁,解析解难以获得,此时有限元法是一种有效的数值求解方法。有限元法将梁离散成若干单元,每个单元用有限个节点表示,通过单元刚度矩阵和质量矩阵组装成全局刚度矩阵和质量矩阵,最终得到一个特征值问题:

[K] {Φ} = ω²[M] {Φ}

其中:

  • [K] 为全局刚度矩阵;

  • [M] 为全局质量矩阵;

  • {Φ} 为振型向量;

  • ω² 为特征值,与固有频率平方成正比。

Matlab的eig函数可以有效地求解该特征值问题,得到梁的固有频率和振型。

三、Matlab代码实现

% 有限元分析
x = linspace(0,L,n+1);
h = L/n;
K = zeros(n+1);
M = zeros(n+1);

for i = 1:n
Ke = E*I/h^3*[12 6*h -12 6*h; 6*h 4*h^2 -6*h 2*h^2; -12 -6*h 12 -6*h; 6*h 2*h^2 -6*h 4*h^2];
Me = rho*A*h/6*[2 1 1 2];
K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + Ke;
M(i:i+1,i:i+1) = M(i:i+1,i:i+1) + Me;
end

% 简支梁边界条件
K(1,:) = 0; K(:,1) = 0; K(1,1) = 1;
K(end,:) = 0; K(:,end) = 0; K(end,end) = 1;
M(1,:) = 0; M(:,1) = 0;
M(end,:) = 0; M(:,end) = 0;


[Phi,Omega2] = eig(K,M);
omega = sqrt(diag(Omega2));
f = omega/(2*pi);

% 绘制结果
figure;
plot(x,Phi(:,1:3));
legend('Mode 1','Mode 2','Mode 3');
xlabel('x (m)');
ylabel('振型');
title('简支梁振型');

% 铰接铰接梁 (类似计算,仅需修改边界条件)
% ...

上述代码仅为简支梁的示例,铰接铰接梁的计算需要修改边界条件矩阵K和M。 需要注意的是,单元个数n的选择会影响计算精度,n越大精度越高,但计算量也越大。 实际应用中需要根据精度要求选择合适的单元个数。

四、结论

本文详细介绍了利用有限元法计算简支梁和铰接铰接梁振型和固有频率的方法,并提供了相应的Matlab代码实现。该方法可以有效地解决各种梁结构的动力特性分析问题,为土木工程结构设计提供重要的理论依据。 然而,实际工程中,梁的截面可能非均匀,材料特性也可能更为复杂,需要采用更高级的有限元软件和分析方法进行更精确的计算。 同时,需要考虑其他因素,例如阻尼的影响,才能更全面地评估结构的动力响应。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值