【信号分解】混合(多元)变分模式分解D-VMD、D-MVMD附matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

变分模态分解 (Variational Mode Decomposition, VMD) 作为一种新型的自适应信号分解方法,凭借其优越的抗噪性能和对非平稳非线性信号的适应性,在诸多领域得到了广泛应用。然而,标准VMD在处理多维或混合信号时存在局限性,难以有效分离不同模态成分。为此,学者们提出了多种改进算法,其中混合(多元)变分模态分解 (D-VMD, D-MVMD) 以其能够有效处理多元信号和混合信号的特点,逐渐成为研究热点。本文将深入探讨D-VMD和D-MVMD的原理、算法流程以及Matlab实现,并对两种方法的优缺点进行比较分析。

一、标准VMD算法回顾

标准VMD算法的核心思想是将输入信号分解成若干个具有有限带宽的模态分量 (Intrinsic Mode Functions, IMFs),并最小化模态带宽之和。该过程通过迭代求解一个约束变分问题实现。具体而言,VMD的目标函数可以表示为:

L({uk, ωk}) = α Σk ||∂t[δ(t) * uk(t)]e^(-jωkt)||²₂ + Σk ||ωk||² 

其中,uk(t) 表示第k个模态分量,ωk 表示其中心频率,α 为平衡参数,控制带宽和中心频率的相对重要性。δ(t) 为狄拉克函数,* 表示卷积运算。该目标函数通过交替方向乘子法 (Alternating Direction Method of Multipliers, ADMM) 进行求解,迭代更新uk(t) 和ωk,直至收敛。

二、混合(多元)变分模态分解:D-VMD与D-MVMD

标准VMD无法直接处理多维或混合信号,而D-VMD和D-MVMD则有效地解决了这个问题。它们的基本思想是将多维信号或混合信号分解成多个低维模态分量,或者将不同类型的信号成分分离出来。

2.1 D-VMD (Decomposition-VMD): D-VMD 通常针对的是混合信号,即包含多种不同类型信号的信号(例如:包含周期信号和冲击信号的混合信号)。其主要策略是先对原始信号进行预处理,例如小波分解或经验模态分解 (Empirical Mode Decomposition, EMD),将不同类型的信号成分初步分离,再对分离后的各部分分别应用标准VMD进行分解。这种方法的优点在于能够针对不同类型的信号选择合适的分解方法,提高分解精度。然而,预处理步骤的选择需要一定的经验和技巧,并且预处理本身也可能引入误差。

2.2 D-MVMD (Decomposed-Multivariate VMD): D-MVMD 主要针对多元信号,即包含多个通道或变量的信号。其核心思想是将多元信号视为一个整体,同时对各个通道进行分解。具体方法有多种,例如可以将多元信号的不同通道分别作为不同的模态输入到标准VMD算法中,或者构建一个多变量的目标函数,同时优化所有通道的模态分量和中心频率。这种方法避免了对多维信号进行降维处理,能够更好地保留信号的原始信息。

三、Matlab代码实现

rately to approximated and detailed components
[u_approx, omega_approx] = VMD(approx, K, alpha, tau, DC);
[u_detail, omega_detail] = VMD(detail, K, alpha, tau, DC);


% Combine the results (This part requires adaptation based on the specific preprocessing method)
u = [u_approx; u_detail];
omega = [omega_approx; omega_detail];

end


% (Simplified VMD function - replace with a proper VMD implementation)
function [u, omega] = VMD(x, K, alpha, tau, DC)
% ... (Implementation of standard VMD algorithm) ...
end 

四、D-VMD与D-MVMD的比较分析

D-VMD和D-MVMD各有优缺点。D-VMD依赖于预处理步骤,其效果很大程度上取决于预处理方法的选择,存在一定的局限性。而D-MVMD可以直接处理多元信号,避免了降维带来的信息损失,但其计算复杂度通常高于D-VMD。选择哪种方法取决于具体的应用场景和信号特点。

五、结论

D-VMD和D-MVMD作为标准VMD的有效扩展,能够更好地处理多维和混合信号。本文对两种方法的原理、算法流程和Matlab实现进行了简要介绍,并对它们的优缺点进行了比较分析。未来研究可以进一步探索更有效的D-VMD和D-MVMD算法,以及它们在不同应用领域的应用。 需要注意的是,以上代码片段仅供参考,实际应用中需要根据具体问题进行调整和优化,并结合更完善的标准VMD算法实现。 此外,参数的选择对分解结果影响较大,需要根据经验和实际情况进行调整。 更深入的研究需要考虑如何选择最优参数以及如何评价分解结果的质量。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值