✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
室内定位技术在近年来得到了广泛关注,其应用场景涵盖了仓储物流、智能家居、应急救援等诸多领域。在全球导航卫星系统(GNSS)信号受限的室内环境中,准确可靠的定位成为一项挑战。本文针对这一问题,提出了一种融合超宽带(UWB)、惯性测量单元(IMU)和超声波(Ultrasonic)的多源传感器融合定位算法,并采用卡尔曼滤波器进行数据融合,利用三种不同的多边定位算法(最小二乘法、递推最小二乘法和梯度下降法)处理UWB距离信息,从而实现高精度的室内定位。
本研究的核心思想是将不同传感器的数据优势互补,提高定位的鲁棒性和精度。UWB技术具有较高的测距精度,但在复杂环境中易受多径效应影响,导致测量误差。IMU能够提供载体的角速度和加速度信息,通过积分可以估计载体的姿态和位移,但其积分误差会随时间累积,导致定位精度下降。超声波传感器则可以提供较为稳定的距离信息,但其精度相对较低,易受环境噪声干扰。因此,需要一种有效的数据融合方法来综合利用这些信息。
本文采用卡尔曼滤波器作为数据融合的核心算法。卡尔曼滤波器是一种最优估计器,它能够根据系统模型和测量模型,对系统的状态进行递推估计。在本研究中,卡尔曼滤波器将IMU提供的线性加速度信息、UWB定位算法估计的位置信息以及超声波传感器提供的距离信息作为输入,并根据预定义的系统模型和测量模型,对载体的位置进行最优估计。
具体而言,本研究的算法流程如下:
-
IMU数据处理: 利用IMU中的加速度计和陀螺仪数据,计算载体的线性加速度。该线性加速度作为卡尔曼滤波器的输入之一,用于预测载体的下一状态。需要强调的是,IMU数据的预处理至关重要,需要进行噪声滤波、零偏校正等操作,以减少积分误差的累积。
-
UWB多边定位: 本研究采用了三种不同的多边定位算法处理UWB距离信息,以获得初始位置估计,作为卡尔曼滤波器的输入。
-
最小二乘法(Least Square): 最小二乘法是一种经典的参数估计方法,通过最小化测量距离与估计距离之间的误差平方和,求解载体的位置。该方法计算简单,但对测量误差较为敏感。
-
递推最小二乘法(Recursive Least Square): 递推最小二乘法是对最小二乘法的改进,它能够逐次更新位置估计,无需重新计算所有数据。该方法计算效率更高,更适合实时定位应用。
-
梯度下降法(Gradient Descent): 梯度下降法是一种迭代优化算法,通过沿着误差函数的梯度方向不断迭代,逐步逼近最优解。该方法对初始值较为敏感,需要合理选择初始值和步长。
-
-
超声波数据处理: 将超声波传感器提供的距离信息作为卡尔曼滤波器的输入,用于修正位置估计。由于超声波数据精度较低,因此需要对其进行滤波处理,以减少噪声干扰。
-
卡尔曼滤波: 将上述IMU线性加速度、UWB多边定位估计位置和超声波距离信息输入到卡尔曼滤波器中,进行状态预测和更新,最终获得载体的最优位置估计。
本研究设计了一个主程序,允许用户灵活配置各种参数,包括选择不同的多边定位算法、指定UWB距离读取路径以及设置卡尔曼滤波器的参数。特别地,对于梯度下降法,主程序还允许用户选择是否考虑边界约束。一种策略是直接将整个工作空间作为边界,另一种策略则是根据前一步的位置估计,缩小边界范围,从而提高梯度下降法的收敛速度和精度。
此外,本研究还专门针对水平运动进行了深入研究,相关结果保存在 /Ultrasonic_study
文件夹中。水平运动场景下,可以对超声波传感器的布局和数据处理进行优化,以提高定位精度。
结论与展望:
本研究提出了一种基于卡尔曼滤波与多源传感器融合的室内定位算法,并通过实验验证了其可行性和有效性。该算法能够综合利用UWB、IMU和超声波传感器的数据优势,提高定位的鲁棒性和精度。三种不同的多边定位算法可以根据不同的应用场景进行选择,以满足不同的性能需求。
未来研究方向包括:
-
优化传感器布局: 合理的传感器布局可以提高定位的精度和覆盖范围。
-
改进卡尔曼滤波器模型: 更加精确的系统模型和测量模型可以提高卡尔曼滤波器的性能。
-
自适应噪声估计: 根据环境变化,自适应地估计噪声参数,可以提高定位的鲁棒性。
-
扩展到三维定位: 将算法扩展到三维定位,可以满足更多应用场景的需求。
-
与其他技术的融合: 将算法与其他定位技术(如视觉定位、WiFi定位)融合,可以进一步提高定位的性能。
总之,本文的研究为室内定位技术的发展提供了一种新的思路,具有重要的学术价值和应用前景。该算法有望在智能家居、仓储物流、应急救援等领域得到广泛应用,为人们的生活和工作带来便利。
⛳️ 运行结果
🔗 参考文献
[1] 李双志.面向室内环境的鲁棒多源融合定位算法研究[D].北京邮电大学,2021.
[2] 程雪聪刘福才黄茹楠.基于卡尔曼滤波和粒子滤波融合的UWB室内定位算法[J].计量学报, 2022, 43(10):1335-1340.
📣 部分代码
function [V Fa] = cubeData(F,MeanErrorMX,MeanErrorMY,MeanErrorMZ,SDErrorMX,SDErrorMY,SDErrorMZ)
Xm = F(1,4)-MeanErrorMX-3*SDErrorMX;
Xp = F(1,4)+MeanErrorMX+3*SDErrorMX;
Ym = F(1,5)-MeanErrorMY-3*SDErrorMY;
Yp = F(1,5)+MeanErrorMY+3*SDErrorMY;
Zm = F(1,6)-MeanErrorMZ-3*SDErrorMZ;
Zp = F(1,6)+MeanErrorMZ+3*SDErrorMZ;
p1 = [Xm Ym Zm];
p2 = [Xm Yp Zm];
p3 = [Xp Yp Zm];
p4 = [Xp Ym Zm];
p5 = [Xm Ym Zp];
p6 = [Xm Yp Zp];
p7 = [Xp Yp Zp];
p8 = [Xp Ym Zp];
V = [p1;p2;p3;p4;...
p2;p3;p7;p6;...
p3;p4;p8;p7;...
p4;p1;p5;p8;...
p1;p2;p6;p5;...
p5;p6;p7;p8];
Fa = [1 2 3 4;
5 6 7 8;
9 10 11 12;
13 14 15 16;
17 18 19 20;
21 22 23 24];
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇