✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
**摘要:**电力线通信(PLC)作为一种利用电力线进行数据传输的技术,因其基础设施的普及性而备受关注。然而,PLC信道环境复杂多变,尤其是在低压PLC网络中,脉冲噪声干扰严重。本文旨在研究一种基于极化码的NOMA-PLC信道编码系统,重点关注Class A噪声对系统性能的影响。该系统结合极化码优异的纠错能力、NOMA技术的频谱效率优势以及OFDM调制技术的抗多径衰落特性,旨在实现高可靠性、高效率的PLC通信。本文将详细分析系统各模块的设计,包括极化码的编译码方法、NOMA功率分配策略、预编码技术、OFDM调制解调、以及Class A噪声建模和干扰抑制。并通过仿真实验评估系统在Class A噪声环境下的性能,为未来PLC系统的优化提供理论参考。
**关键词:**电力线通信,极化码,非正交多址接入,OFDM,Class A噪声,信道编码,功率分配,预编码
1. 引言
电力线通信(PLC)技术作为一种无需额外布线即可进行数据传输的解决方案,在智能电网、智能家居、工业自动化等领域展现出巨大的应用潜力。然而,PLC信道环境复杂,面临着多种挑战,包括多径衰落、阻抗失配、以及各种噪声干扰。其中,低压PLC网络受到的噪声干扰尤为严重,这些噪声主要包括背景噪声、窄带干扰和脉冲噪声。脉冲噪声往往具有高振幅、短持续时间的特点,严重影响PLC系统的可靠性和性能。
近年来,非正交多址接入(NOMA)技术因其能够提升频谱效率、增加系统容量而受到广泛关注。NOMA技术允许不同用户在相同的时频资源上进行传输,通过功率分配和串行干扰消除(SIC)技术实现用户分离。将NOMA技术应用于PLC系统,可以有效地提高频谱利用率。
另一方面,信道编码技术在提高通信系统可靠性方面发挥着关键作用。极化码作为一种新兴的信道编码技术,在理论上被证明能够达到信道容量,并具有较低的编译码复杂度。因此,将极化码应用于PLC系统中,可以有效地抵抗信道噪声干扰,提高通信系统的可靠性。
本文旨在研究一种基于极化码的NOMA-PLC信道编码系统,重点关注Class A噪声对系统性能的影响。该系统结合极化码优异的纠错能力、NOMA技术的频谱效率优势以及OFDM调制技术的抗多径衰落特性,旨在实现高可靠性、高效率的PLC通信。
2. 系统模型
本文提出的极化NOMA-PLC信道编码系统模型如图1所示:
[在此插入一个系统框图,框图应清晰标明以下模块:数据源(用户1和用户2), 极化编码器(用户1和用户2), NOMA功率分配, 预编码, OFDM调制, 信道添加ClassA噪声, OFDM解调, NOMA解码, 极化解码器(用户1和用户2), 数据接收端(用户1和用户2)]
该系统主要由以下模块组成:
- 数据源:
用户1和用户2产生需要传输的数据信息。
- 极化编码器:
对用户1和用户2的数据信息分别进行极化编码,以提高传输可靠性。
- NOMA功率分配:
根据一定的策略,为用户1和用户2分配不同的功率,实现非正交多址接入。
- 预编码:
对分配功率后的信号进行预编码,进一步优化信号传输,抑制干扰。
- OFDM调制:
利用正交频分复用(OFDM)技术,将信号调制到多个子载波上进行传输,以抵抗多径衰落的影响。
- 信道:
模拟实际的PLC信道环境,其中加入Class A噪声。
- OFDM解调:
对接收到的信号进行OFDM解调,恢复频域信号。
- NOMA解码:
利用串行干扰消除(SIC)技术,对接收到的信号进行NOMA解码,分离出用户1和用户2的信号。
- 极化解码器:
对解码后的用户1和用户2的信号进行极化解码,恢复原始数据信息。
- 数据接收端:
接收并处理用户1和用户2的原始数据信息。
3. 关键模块设计
3.1 极化码编译码
极化码的编码过程基于信道极化现象,将原始信道分割成一组容量差异极大的子信道。选择容量高的子信道传输信息比特,容量低的子信道传输冻结比特(通常为0)。编码过程可以通过递归的方式实现。
设编码长度为N=2<sup>n</sup>,信息位长度为K,冻结位长度为N-K。编码过程可以使用如下公式表示:
x = uF
其中,x为编码后的码字,u为原始信息比特和冻结比特的组合,F为N×N的生成矩阵,可以用克罗内克积表示:
F = F<sub>2</sub><sup>⊗n</sup>
其中,F<sub>2</sub> = [1 0; 1 1] 为基本生成矩阵,⊗表示克罗内克积。
极化码的译码算法主要有连续消除(SC)译码和置信传播(BP)译码。SC译码算法复杂度较低,但性能相对较差。BP译码算法性能较好,但复杂度较高。本文将重点研究基于SC译码算法的实现。
3.2 NOMA功率分配
在NOMA系统中,功率分配是影响系统性能的关键因素。不同的功率分配策略会导致不同的用户性能。常用的功率分配策略包括固定功率分配和动态功率分配。
- 固定功率分配:
为每个用户分配固定的功率比例。通常,分配给信道条件较差的用户的功率较高,分配给信道条件较好的用户的功率较低。
- 动态功率分配:
根据信道条件的变化,动态调整每个用户的功率分配比例。这种方法可以更好地适应信道变化,提高系统性能,但实现复杂度较高。
本文将研究基于用户信道条件的固定功率分配策略,旨在简化系统设计的同时,保证一定的性能。
3.3 预编码技术
预编码技术在发射端对信号进行预处理,可以有效地抑制干扰,提高系统性能。常用的预编码技术包括信道反转(CSI)预编码、迫零(ZF)预编码和最小均方误差(MMSE)预编码。
- 信道反转预编码:
根据信道信息,对信号进行反转,抵消信道对信号的影响。
- 迫零预编码:
设计预编码矩阵,使得接收端的干扰为零。
- 最小均方误差预编码:
设计预编码矩阵,使得接收端的均方误差最小。
本文将研究基于迫零(ZF)预编码技术的实现,因为它在抑制用户间干扰方面表现良好,并且复杂度相对较低。
3.4 OFDM调制解调
正交频分复用(OFDM)技术是一种将高速数据流分解成多个低速子数据流,并在多个正交的子载波上进行传输的调制技术。OFDM技术具有抗多径衰落、频谱利用率高等优点,适用于复杂的PLC信道环境。
OFDM调制过程主要包括串并转换、IFFT变换、添加循环前缀(CP)等步骤。OFDM解调过程主要包括去除循环前缀、FFT变换、并串转换等步骤。
3.5 Class A噪声建模与抑制
PLC信道中的脉冲噪声通常可以用Class A噪声模型进行描述。Class A噪声是一种统计噪声模型,其概率密度函数可以表示为:
p(n) = ∑<sup>∞</sup><sub>m=0</sub> P(m) / (√(2πσ<sup>2</sup><sub>m</sub>)) * exp(-n<sup>2</sup> / (2σ<sup>2</sup><sub>m</sub>))
其中,P(m)表示泊松分布,σ<sup>2</sup><sub>m</sub>表示噪声的功率,可以通过参数A(脉冲指数)和 Γ(高斯噪声功率与脉冲噪声功率之比)来控制。
针对Class A噪声,可以采用多种干扰抑制技术,例如:
- 限幅器:
限制信号的幅度,抑制幅度过大的脉冲噪声。
- 非线性滤波器:
利用非线性滤波技术,滤除脉冲噪声。
- 基于统计模型的噪声估计和消除:
利用Class A噪声的统计模型,估计噪声参数,并进行噪声消除。
本文将研究基于限幅器的简单有效的脉冲噪声抑制方法。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇