【控制】基于深度强化学习DDPG实现温度控制,与PID和其他方法的性能进行比较附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

温度控制是工业生产、暖通空调、以及其他诸多领域中至关重要的一环。精确且稳定的温度控制能够确保产品质量,提高能源效率,并提升系统运行的可靠性。传统的温度控制方法,如比例积分微分(PID)控制器,因其简单易用,参数易于调整而被广泛应用。然而,PID控制器在面对复杂、非线性、时变的温度控制系统时,往往难以达到理想的控制效果。近年来,深度强化学习(DRL)的蓬勃发展为解决此类复杂控制问题提供了新的思路。本文将探讨如何利用深度强化学习中的深度确定性策略梯度(DDPG)算法实现温度控制,并与PID控制器以及其他控制方法进行性能比较。

一、传统温度控制方法的局限性

PID控制器是经典且广泛应用的控制算法,其通过调整比例(P)、积分(I)和微分(D)三个参数来调节控制器的输出,从而使被控对象达到期望的目标值。PID控制器的优势在于其结构简单,易于理解和实现。然而,PID控制器也存在着一些固有的局限性:

  • **参数整定困难:**PID控制器的参数整定往往需要经验丰富的工程师进行反复调试。对于复杂系统,参数的相互耦合使得手动整定变得困难且耗时。常用的整定方法,如经验法、临界比例法等,都依赖于一定的先验知识,且难以保证在所有工况下都能达到最佳性能。

  • **非线性系统适应性差:**PID控制器的设计基于线性系统的假设。在面对具有显著非线性的温度控制系统时,PID控制器的性能会显著下降。例如,热交换器的传热系数会随着温度的变化而变化,导致系统呈现非线性特性。

  • **时变系统适应性差:**实际的温度控制系统往往是时变的,即系统的参数会随着时间的推移而发生变化。PID控制器通常采用固定的参数,难以适应这种时变性,从而导致控制性能下降。例如,环境温度的变化会影响系统的散热量,进而改变系统的动态特性。

  • **多变量耦合问题:**在许多工业应用中,温度控制系统是多变量耦合的。例如,对多个区域进行温度控制时,各个区域之间的温度会相互影响。PID控制器难以有效处理这种多变量耦合问题,需要采用解耦等复杂策略,这进一步增加了设计的难度。

除了PID控制器之外,还有一些其他的温度控制方法,如模糊控制、模型预测控制(MPC)等。模糊控制具有较强的非线性适应能力,但其规则的制定依赖于专家的经验。MPC能够处理多变量耦合问题,并能考虑约束条件,但其计算复杂度较高,需要精确的系统模型。

二、深度强化学习DDPG算法简介

深度强化学习(DRL)是一种基于试错学习的机器学习方法,它通过与环境的交互来学习最优的策略,从而最大化累积奖励。DDPG算法是DRL中的一种经典的算法,特别适用于解决连续动作空间的控制问题。DDPG算法结合了深度学习和强化学习的优点,能够从高维状态空间中学习复杂的策略。

DDPG算法采用Actor-Critic框架,其中Actor网络用于学习最优的策略,Critic网络用于评估当前策略的优劣。Actor网络接收当前的状态作为输入,输出连续的动作。Critic网络接收当前的状态和动作作为输入,输出一个Q值,用于表示该状态和动作的价值。

DDPG算法的训练过程如下:

  1. Experience Replay:

     将Agent与环境交互的经验 (state, action, reward, next_state) 存储到经验回放池中。

  2. Critic网络更新:

     从经验回放池中随机采样一批经验,利用时间差分(TD)误差更新Critic网络的参数。TD误差表示当前Q值的估计与目标Q值的差距。

  3. Actor网络更新:

     利用Critic网络的输出,通过策略梯度方法更新Actor网络的参数。Actor网络的更新目标是最大化Critic网络的Q值,从而学习最优的策略。

  4. Target网络更新:

     为了提高算法的稳定性,DDPG算法使用Target网络来计算目标Q值。Target网络是Actor网络和Critic网络的复制,其参数以缓慢的速度从Actor网络和Critic网络更新。

三、基于DDPG的温度控制系统设计

利用DDPG算法实现温度控制,需要将温度控制问题建模为一个强化学习问题。具体步骤如下:

  1. 状态空间:

     状态空间描述了Agent对环境的感知。对于温度控制系统,状态空间可以包括当前温度、目标温度、环境温度、以及温度变化率等信息。

  2. 动作空间:

     动作空间描述了Agent可以采取的动作。对于温度控制系统,动作空间可以是加热功率或冷却功率等。

  3. 奖励函数:

     奖励函数用于指导Agent的学习。对于温度控制系统,奖励函数可以根据当前温度与目标温度的差距来设计。例如,当温度接近目标温度时,可以给予正向奖励;当温度远离目标温度时,可以给予负向奖励。同时,为了鼓励节能,可以对动作的大小进行惩罚。

  4. 环境建模:

     需要对温度控制系统进行建模,可以是物理模型,也可以是数据驱动模型。模型描述了Agent采取动作后,环境如何变化。

基于上述建模,可以利用DDPG算法训练Agent,使其学习最优的温度控制策略。具体的网络结构和参数需要根据具体的温度控制系统进行调整。

四、与PID和其他控制方法的性能比较

为了验证基于DDPG的温度控制算法的有效性,需要将其与PID控制器以及其他控制方法进行性能比较。性能比较的指标可以包括:

  • 稳态误差:

     稳态误差是指系统达到稳定状态后,实际温度与目标温度的差距。

  • 超调量:

     超调量是指系统在达到稳定状态之前,温度超过目标温度的最大值。

  • 调节时间:

     调节时间是指系统从初始状态达到稳定状态所需的时间。

  • 抗干扰能力:

     抗干扰能力是指系统在受到干扰时,保持温度稳定的能力。

  • 能量消耗:

     能量消耗是指系统在运行过程中所消耗的能量。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值