五模型对比!Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

多变量时间序列预测是诸多领域,例如金融、气象、电力系统等的核心任务。其挑战在于捕捉不同变量之间复杂的时序依赖关系,并有效提取隐藏在历史数据中的模式,从而进行准确的未来预测。近年来,深度学习模型在时间序列预测领域取得了显著进展,涌现出各种模型架构,它们各有优劣,适用于不同的数据特性和预测目标。本文将详细对比五种常用的深度学习模型在多变量时间序列预测中的应用,分别是:Transformer-GRU、Transformer、CNN-GRU、GRU 和 CNN。我们将从模型架构、优缺点、适用场景以及可能遇到的挑战等方面进行深入剖析,旨在为读者提供选择合适模型架构的参考。

1. GRU (Gated Recurrent Unit)

GRU 作为循环神经网络 (RNN) 的一种变体,通过门控机制有效缓解了传统 RNN 中存在的梯度消失问题。其核心在于更新门和重置门,分别控制前一时刻隐藏状态对当前时刻隐藏状态的影响程度以及当前时刻输入信息与前一时刻隐藏状态的融合程度。

  • 优点:

    • 结构相对简单:

       相较于 LSTM (Long Short-Term Memory),GRU 拥有更少的参数,训练速度更快,更容易收敛。

    • 擅长处理序列数据:

       GRU 能够捕捉序列数据中的时间依赖关系,并将其编码到隐藏状态中。

    • 缓解梯度消失问题:

       门控机制使得 GRU 能够更好地保留重要信息,避免信息在长序列中丢失。

  • 缺点:

    • 捕捉长距离依赖能力有限:

       虽然门控机制缓解了梯度消失问题,但对于非常长的序列,GRU 仍然难以有效捕捉长距离依赖关系。

    • 串行计算模式:

       RNN 固有的串行计算模式限制了模型的并行化能力,在高计算资源环境下存在瓶颈。

    • 难以并行处理多个变量之间的复杂关系:

       尽管可以处理多变量时间序列,但其设计并非专门为了捕捉不同变量之间的复杂交互关系。

  • 适用场景:

    • 数据量较小,序列长度适中的时间序列预测任务。

    • 对实时性要求较高,需要快速完成预测的任务。

    • 变量之间依赖关系相对简单的场景。

2. CNN (Convolutional Neural Network)

传统的 CNN 主要应用于图像处理领域,但近年来也逐渐被引入到时间序列预测任务中。其基本原理是利用卷积核对时间序列进行滑动扫描,提取局部特征,然后通过池化层降低维度,最终利用全连接层进行预测。

  • 优点:

    • 并行计算能力强:

       CNN 具有高度的并行性,可以充分利用 GPU 等硬件资源进行加速。

    • 擅长提取局部特征:

       卷积核可以有效地捕捉时间序列中的局部模式和趋势。

    • 模型参数相对较少:

       相较于 RNN,CNN 的参数量通常更少,训练速度更快。

  • 缺点:

    • 难以捕捉长距离依赖:

       CNN 对长距离依赖的捕捉能力较弱,需要堆叠多层卷积层才能扩大感受野。

    • 缺乏时序建模能力:

       CNN 本身并不具备时序建模能力,需要进行特殊设计才能应用于时间序列预测。

    • 对输入数据敏感:

       CNN 的性能对输入数据的尺度和预处理方式比较敏感。

  • 适用场景:

    • 需要快速处理大规模时间序列数据,对实时性要求较高的任务。

    • 时间序列具有明显的局部模式和趋势,长距离依赖不重要的场景。

    • 数据量充足,可以充分训练模型的场景。

3. CNN-GRU (CNN followed by GRU)

CNN-GRU 模型结合了 CNN 和 GRU 的优势,首先利用 CNN 提取时间序列的局部特征,然后将提取的特征输入到 GRU 中进行时序建模。这种架构能够同时捕捉局部模式和长距离依赖关系。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值