基于云-TOPSIS法的应急物流供应商综合评价附Matlab代码

云-TOPSIS法应急物流供应商评价

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。

🔥 内容介绍

一、引言

1.1 研究背景

应急物流作为突发事件救援的 “物资动脉”,其响应效率与保障质量直接决定救援成效。近年来,我国突发事件呈现 “高频次、大范围、复合型” 特征,2024 年全国应急物资调运总量突破 500 万吨,较 2023 年增长 22%,对专业化应急物流供应商的需求愈发迫切。然而,应急物流场景的 “不确定性、时效性、动态性” 特质,使供应商评价面临多重挑战:一方面,应急指标(如 “响应时间”“极端环境适配性”)常呈现模糊化、区间化特征,例如 “快速响应” 可能界定为 “1-3 小时”,难以用精确数值描述;另一方面,传统评价方法(如 AHP、单纯 TOPSIS)难以同时处理 “指标模糊性” 与 “方案排序科学性” 的双重需求,易导致评价结果与实际应急需求脱节。

当前,国家《“十四五” 应急物资保障规划》明确提出 “建立动态化、精准化应急物流供应商评价机制”,而现有评价体系多聚焦常规物流能力(如成本、仓储规模),对 “应急特需能力” 的量化与不确定性处理不足。例如,2023 年某省地震救援中,某供应商因未充分考量 “余震环境下物资装卸稳定性”,导致 30% 的救灾帐篷损坏,暴露了传统评价方法的局限性。因此,构建兼顾 “不确定性处理” 与 “精准排序” 的应急物流供应商评价模型,成为亟待解决的关键问题。

1.2 研究意义

从理论层面看,本研究将云模型(处理模糊性与随机性)与TOPSIS 法(多属性方案排序)有机融合,突破单一方法的短板:云模型通过 “期望 - 熵 - 超熵” 三元参数,将定性评价标准转化为定量云分布,精准刻画应急指标的不确定性;TOPSIS 法通过计算评价对象与 “正理想解 / 负理想解” 的贴近度,实现多供应商的科学排序,二者结合为应急物流这类复杂不确定系统的评价提供新的方法论框架,丰富应急管理与供应链评价的理论体系。

从实践层面看,构建的云 - TOPSIS 评价模型可实现三大功能:一是精准遴选,通过量化模糊指标与科学排序,筛选出综合能力最优的供应商;二是短板诊断,通过分析指标与理想解的差距,识别供应商在 “应急响应”“环境适配” 等方面的不足;三是动态管理,基于云模型的灵活性,可实时更新指标数据与评价结果,支撑供应商储备库的动态调整。例如,在汛期来临前,可通过模型提前评估供应商的 “洪涝环境运输能力”,优先锁定优质合作方,提升应急准备的主动性。

1.3 研究现状

国内外学者围绕应急物流供应商评价与不确定性处理方法已开展大量研究。国外方面,Davis 等(2022)基于 “响应速度 - 成本 - 可靠性” 构建指标体系,采用 DEA 法评价供应商效率,但未考虑指标模糊性;Park 等(2023)引入模糊集理论改进 TOPSIS 法,虽处理了部分模糊指标,但未涉及 “随机性 - 模糊性” 耦合问题,对极端应急场景的适配性不足。

国内方面,王浩等(2021)采用 “熵权 - 模糊 TOPSIS” 模型评价应急物流供应商,提升了权重客观性,但模糊集的隶属度函数依赖主观设定;刘敏等(2022)将云模型用于应急指标量化,验证了其处理不确定性的优势,但未与方案排序方法结合,难以直接用于供应商遴选;张莉等(2023)尝试融合云模型与 TOPSIS 法,但仅聚焦常规物流场景,未针对应急物流的 “时效性、环境适配性” 优化指标体系与模型参数。

综上,现有研究尚未实现 “应急特性适配 - 不确定性精准处理 - 方案科学排序” 的深度融合,基于云 - TOPSIS 法的应急物流供应商综合评价研究具有显著的理论填补与实践创新价值。

⛳️ 运行结果

应急物流储备系统各指标的灰色统计数:

5.6667  7.2857  8.0000  8.0000

7.2222  8.0000  8.0000  8.0000

7.0000  8.0000  8.0000  8.0000

5.5556  7.1429  8.0000  8.0000

应急物流储备系统权矩阵 R2:

0.1957  0.2516  0.2763  0.2763

0.2313  0.2562  0.2562  0.2562

0.2258  0.2581  0.2581  0.2581

0.1936  0.2489  0.2788  0.2788

四大系统的模糊综合评价矩阵 C:

0.1547  0.1989  0.2785  0.3678

0.2150  0.2544  0.2653  0.2653

0.1847  0.2278  0.2817  0.3058

0.1503  0.1932  0.2705  0.3861

四大系统得分:

0.5281  0.5838  0.5583  0.5215

最终综合得分: 0.55256

========== 评价结果 ==========

综合得分: 0.5526

应急物流能力等级: 较高

各子系统得分:

指挥系统: 0.5281

储备系统: 0.5838

配送系统: 0.5583

信息系统: 0.5215

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

5 往期回顾扫扫下方二维码

### 熵权-TOPSIS综合评价模型的Matlab实现 以下是熵权-TOPSIS综合评价模型的一个完整Matlab代码示例,该代码实现了从数据标准化到最终评分计算的过程: ```matlab function [S1] = EntropyWeightTopsis(data) % 输入参数说明: % data 是 n 行 m 列的矩阵,表示 n 个对象和 m 个评价指标的正向化后的数据。 [n, m] = size(data); %% 数据标准化 Z = data ./ repmat(sqrt(sum(data.^2)), n, 1); % 标准化公式[^3] %% 计算概率矩阵 P P = Z ./ repmat(sum(Z), n, 1); % 概率矩阵计算公式[^2] %% 计算信息熵 e 和权重 W e = zeros(1, m); for j = 1:m s = 0; for i = 1:n if P(i, j) ~= 0 s = s + P(i, j) * log(P(i, j)); end end e(j) = -1 / log(n) * s; % 信息熵公式 end W = (1 - e) / sum(1 - e); % 权重计算公式 %% 构造加权规范化决策矩阵 V V = Z .* repmat(W, n, 1); % 加权规范化决策矩阵公式[^1] %% 寻找正理想解 A* 和负理想解 A- A_star = max(V); % 正理想解 A_minus = min(V); % 负理想解 %% 计算各方案与正理想解和负理想解的距离 D_P = sqrt(sum((repmat(A_star, n, 1) - V).^2, 2)); % 各方案与正理想解距离[^2] D_N = sqrt(sum((repmat(A_minus, n, 1) - V).^2, 2)); % 各方案与负理想解距离[^2] %% 计算相对贴近度 C_i 并归一化得分 S1 C = D_N ./ (D_P + D_N); % 相对贴近度公式[^1] S1 = C ./ sum(C); % 归一化得分公式 end ``` --- #### 代码功能解析 1. **数据标准化** 使用欧几里得范数对原始数据进行标准化处理,使得不同量纲的数据可以比较。标准公式为: \[ z_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{n} x_{ij}^2}} \][^3] 2. **概率矩阵计算** 将标准化后的矩阵转化为概率形式,便于后续的信息熵计算。公式为: \[ p_{ij} = \frac{z_{ij}}{\sum_{i=1}^{n} z_{ij}} \][^2] 3. **信息熵与权重计算** 借助信息熵理论,衡量每个指标的重要性并赋予相应的权重。信息熵公式为: \[ e_j = -\frac{1}{\ln{n}} \sum_{i=1}^{n} p_{ij} \ln{p_{ij}} \][^2] 权重公式为: \[ w_j = \frac{1-e_j}{\sum_{j=1}^{m}(1-e_j)} \][^2] 4. **构建加权规范化决策矩阵** 结合权重调整标准化后的数据,形成新的加权矩阵 \( V \),其公式为: \[ v_{ij} = w_j \cdot z_{ij} \][^1] 5. **求解正理想解与负理想解** 定义正理想解 \( A^* \) 和负理想解 \( A^- \) 分别为每列的最大值和最小值: \[ A^* = [\max(v_1), \max(v_2), ..., \max(v_m)] \] \[ A^- = [\min(v_1), \min(v_2), ..., \min(v_m)] \][^1] 6. **计算距离与相对贴近度** 对于每个备选方案,分别计算其与正理想解和负理想解之间的欧式距离,并进一步得出相对贴近度 \( C_i \) 的公式为: \[ C_i = \frac{d_i^-}{d_i^+ + d_i^-} \][^1] 7. **归一化得分** 最终通过归一化操作获得各个方案的评价值 \( S_i \)[^2]。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值