在医学领域,数据可视化是理解和分析复杂信息的重要工具。涟漪图(Ripple Map)作为一种独特的可视化手段,能够直观地展示地理空间上的数据分布,辅助医疗资源规划、疾病监测与防控以及医学研究。本文将深入探讨涟漪图的特点、作用与价值,并通过具体的Python代码示例,展示如何实际绘制和应用涟漪图。
涟漪图概述
涟漪图是一种基于地理位置的可视化图表,通过在地图上使用不同大小或颜色的圆形来表示特定数据的分布。每个圆形对应一个地理位置,其大小或颜色反映该位置的数据值。这种图表能够让我们一目了然地了解数据在空间上的分布情况,识别出数据集中的集中区域或差异显著的地区。
涟漪图的作用与价值
1. 直观呈现地理分布
涟漪图能够清晰地展示数据在地理空间上的分布。例如,在医学研究中,可以使用涟漪图展示某种疾病在不同地区的发病情况,或是医疗资源在各个区域的分布状态。
2. 突出数据集中区域
通过涟漪图,能够快速识别出数据集中的高密度区域。这对于确定医疗资源丰富的地区、疾病高发区域等具有重要意义,有助于进行针对性的资源分配和疾病防控。
3. 便于比较地区差异
涟漪图使得不同地区的数据差异一目了然,便于制定区域医疗政策和开展相关医学研究。
实战案例:全国各省市三甲医院分布涟漪图
为了更好地理解涟漪图的应用,本文将通过一个实际案例,结合Python代码,展示如何绘制全国各省市三甲医院的分布涟漪图。
案例背景
假设我们有一份包含全国各省市三级甲等医院(简称三甲医院)数量的数据。目标是通过涟漪图,直观展示各省市三甲医院的分布情况,识别医疗资源分布不均衡的问题,为合理调配医疗资源提供数据支持。
所需工具与库
在本案例中,我们将使用以下Python库:
pandas
:用于数据处理与分析。geopandas
:用于地理数据处理。matplotlib
:基础绘图库,用于绘制涟漪图。contextily
:用于添加底图,提高地图的可读性。plotly
:用于创建交互式涟漪图(可选)。dash
:用于将涟漪图集成到Web应用中(可选)。
确保你已经安装了这些库。如果没有安装,可以使用以下命令进行安装:
pip install pandas geopandas matplotlib contextily plotly dash
数据准备
首先,我们准备一份包含省市名称及对应三甲医院数量的数据。以下是一个简化的示例数据集:
import pandas as pd
# 创建示例数据
data = {
'省市': ['北京', '上海', '广东', '江苏', '浙江', '山东', '河南', '四川', '湖北', '湖南'],
'三甲医院数量': [70, 60, 150, 120, 90, 100, 80, 110, 85, 95]
}
df = pd.DataFrame(data)
print(df)
输出:
省市 三甲医院数量
0 北京 70
1 上海 60
2 广东 150
3 江苏 120
4 浙江 90
5 山东 100
6 河南 80
7 四川 110
8 湖北 85
9 湖南 95
接下来,我们需要为每个省市添加地理坐标(经纬度),以便在地图上准确定位。以下示例中,我们手动添加大致的经纬度数据。
# 手动添加经纬度(示例数据,实际应用中应使用精确坐标)
coordinates = {
'北京': {'longitude': 116.405285, 'latitude': 39.904989},
'上海': {'longitude': 121.472644, 'latitude': 31.231706},
'广东': {'longitude': 113.280637, 'latitude': 23.125178},
'江苏': {'longitude': 118.763234, 'latitude': 32.041544},
'浙江': {'longitude': 120.153576, 'latitude': 30.287459},
'山东': {'longitude': 117.000923, 'latitude': 36.675807},
'河南': {'longitude': 113.665412, 'latitude': 34.757975},
'四川': {'longitude': 104.066541, 'latitude': 30.572269},
'湖北': {'longitude': 114.298572, 'latitude': 30.584355},
'湖南': {'longitude': 112.982279, 'latitude': 28.194090}
}
# 将经纬度添加到数据框中
df['longitude'] = df['省市'].apply(lambda x: coordinates[x]['longitude'])
df['latitude'] = df['省市'].apply(lambda x: coordinates[x]['latitude'])
print(df)
输出:
省市 三甲医院数量 longitude latitude
0 北京 70 116.405285 39.904989
1 上海 60 121.472644 31.231706
2 广东 150 113.280637 23.125178
3 江苏 120 118.763234 32.041544
4 浙江 90 120.153576 30.287459
5 山东 100 117.000923 36.675807
6 河南 80 113.665412 34.757975
7 四川 110 104.066541 30.572269
8 湖北 85 114.298572 30.584355
9 湖南 95 112.982279 28.194090
绘制涟漪图
接下来,我们使用geopandas
和matplotlib
绘制涟漪图。
import geopandas as gpd
import matplotlib.pyplot as plt
import contextily as ctx
# 创建GeoDataFrame
gdf = gpd.GeoDataFrame(
df,
geometry=gpd.points_from_xy(df.longitude, df.latitude),
crs='EPSG:4326' # WGS84坐标系
)
# 转换为Web Mercator坐标系,以便与底图匹配
gdf = gdf.to_crs(epsg=3857)
# 设置图形大小
plt.figure(figsize=(12, 8))
# 绘制底图(空白图)
ax = gdf.plot(figsize=(10, 10), alpha=0.0)
# 添加底图
ctx.add_basemap(ax, source=ctx.providers.Stamen.TerrainBackground)
# 绘制涟漪
gdf.plot(
ax=ax,
markersize=gdf['三甲医院数量'] * 10, # 调整圆形大小
color='red',
alpha=0.6,
edgecolor='k'
)
# 添加标题和注释
plt.title('全国各省市三甲医院分布涟漪图', fontsize=16)
plt.xlabel('经度')
plt.ylabel('纬度')
# 添加图例
import matplotlib.patches as mpatches
from matplotlib.legend import Legend
# 创建自定义图例
sizes = [60, 90, 120, 150]
labels = ['60家', '90家', '120家', '150家']
handles = [plt.scatter([], [], s=size*10, color='red', alpha=0.6, edgecolors='k') for size in sizes]
legend = ax.legend(handles, labels, title='三甲医院数量', scatterpoints=1, loc='lower left', fontsize=10)
ax.add_artist(legend)
# 显示图形
plt.show()
图示效果:
注:图片链接为示例,实际操作时将生成相应的图形。
代码解析
-
数据转换与地理处理:
- 使用
geopandas.GeoDataFrame
将数据框转换为地理数据框,并指定经纬度作为几何点。 - 通过
to_crs
方法将坐标系转换为Web Mercator(EPSG:3857),以匹配底图坐标系。
- 使用
-
绘制底图:
- 使用
contextily
添加地形底图,提高地图的可读性。 source=ctx.providers.Stamen.TerrainBackground
指定底图的样式,可以根据需要更换不同的底图源。
- 使用
-
绘制涟漪:
- 通过
gdf.plot
绘制圆形,markersize
参数根据三甲医院数量乘以一个系数(如10)调整大小。 alpha
设置圆形的透明度,edgecolor
设置圆形边缘颜色,增强视觉效果。
- 通过
-
图例与注释:
- 使用
matplotlib.patches
和Legend
创建自定义图例,帮助读者理解圆形大小与三甲医院数量之间的对应关系。 - 添加标题和轴标签,提升图形的可读性。
- 使用
结果分析
通过上述涟漪图,我们可以清晰地看到全国各省市三甲医院的分布情况。以下是一些关键观察点:
- 广东拥有最多的三甲医院,圆形最大,显示其医疗资源丰富。
- 北京和上海作为直辖市,也拥有较多的三甲医院,表明其在医疗资源上的领先地位。
- 江苏和四川等经济发达地区同样有较多的三甲医院。
- 相比之下,湖北和湖南的圆形较小,提示这些地区的三甲医院数量相对较少,可能需要进一步的医疗资源支持。
通过这种可视化分析,医疗管理者能够迅速识别出医疗资源分布不均的区域,制定相应的资源调配方案,如在资源匮乏的地区增加医疗设施或优化现有资源配置。
涟漪图的高级应用与优化
在实际应用中,为了提升涟漪图的表达力和交互性,可以进行以下优化与扩展:
1. 动态涟漪图
通过结合实时数据,可以创建动态涟漪图,实时反映医疗资源或疾病状况的变化。使用Plotly
库,可以实现更为动态和交互性的涟漪图。
示例代码:
import plotly.express as px
# 转换回WGS84坐标系
gdf_wgs84 = gdf.to_crs(epsg=4326)
# 创建交互式涟漪图
fig = px.scatter_mapbox(
gdf_wgs84,
lat=gdf_wgs84.geometry.y,
lon=gdf_wgs84.geometry.x,
size='三甲医院数量',
color='三甲医院数量',
hover_name='省市',
size_max=50,
zoom=3,
mapbox_style="carto-positron"
)
fig.update_layout(
title='全国各省市三甲医院分布涟漪图',
title_x=0.5
)
fig.show()
特点:
- 交互性强:支持鼠标悬停显示详细信息。
- 动态查看:可以放大、缩小地图,动态查看各区域情况。
2. 添加多维度数据
在涟漪图中可以同时展示多个维度的数据,如除了三甲医院数量,还可以展示每个医院的床位数、医生数量等。
示例代码:
# 添加床位数(示例数据)
df['床位数'] = [500, 450, 1500, 1200, 900, 1000, 800, 1100, 850, 950]
# 更新GeoDataFrame
gdf = gpd.GeoDataFrame(
df,
geometry=gpd.points_from_xy(df.longitude, df.latitude),
crs='EPSG:4326'
).to_crs(epsg=3857)
# 绘制涟漪图,颜色代表床位数
plt.figure(figsize=(12, 8))
ax = gdf.plot(figsize=(10, 10), alpha=0.0)
ctx.add_basemap(ax, source=ctx.providers.Stamen.TerrainBackground)
gdf.plot(
ax=ax,
markersize=gdf['三甲医院数量'] * 10,
column='床位数',
cmap='OrRd',
alpha=0.6,
edgecolor='k',
legend=True,
legend_kwds={'label': "床位数"}
)
plt.title('全国各省市三甲医院分布涟漪图(按床位数着色)', fontsize=16)
plt.xlabel('经度')
plt.ylabel('纬度')
plt.show()
效果:
- 颜色深浅:直观展示各省市三甲医院的床位数。
- 双重维度:圆形大小表示三甲医院数量,颜色表示床位数,数据表达更为全面。
3. 优化数据重叠问题
在数据密集的区域,圆形可能会相互覆盖,影响可读性。为了解决这一问题,可以采用以下方法:
- 调整透明度:增加圆形的透明度,使重叠部分仍可见。
- 优化边缘颜色:使用对比色或白色边缘,减少重叠视觉。
- 使用不同符号:替换圆形为其他形状,减少视觉干扰。
示例代码:
plt.figure(figsize=(12, 8))
ax = gdf.plot(figsize=(10, 10), alpha=0.0)
ctx.add_basemap(ax, source=ctx.providers.Stamen.TerrainBackground)
gdf.plot(
ax=ax,
markersize=gdf['三甲医院数量'] * 10,
color='blue',
alpha=0.4, # 增加透明度
edgecolor='white', # 使用白色边缘,减少重叠视觉
linewidth=0.5
)
plt.title('全国各省市三甲医院分布涟漪图(优化重叠显示)', fontsize=16)
plt.xlabel('经度')
plt.ylabel('纬度')
plt.show()
4. 集成到Web应用中
通过将涟漪图集成到Web应用中,可以实现实时数据可视化和交互功能。使用Dash
框架,可以创建动态的医学可视化平台。
示例代码:
import dash
from dash import Dash, html, dcc
import plotly.express as px
# 准备数据
gdf_wgs84 = gdf.to_crs(epsg=4326)
# 创建Dash应用
app = Dash(__name__)
fig = px.scatter_mapbox(
gdf_wgs84,
lat=gdf_wgs84.geometry.y,
lon=gdf_wgs84.geometry.x,
size='三甲医院数量',
color='三甲医院数量',
hover_name='省市',
size_max=50,
zoom=3,
mapbox_style="carto-positron",
title='全国各省市三甲医院分布涟漪图'
)
app.layout = html.Div([
html.H1("医学可视化之涟漪图"),
dcc.Graph(figure=fig)
])
if __name__ == '__main__':
app.run_server(debug=True)
特点:
- 交互式Web应用:用户可以在线查看和分析数据。
- 实时更新:支持实时数据的动态展示,适用于动态监控场景。
涟漪图的优势与局限
优势
- 直观性强:通过视觉元素迅速传达地理分布信息,使复杂的数据易于理解。
- 空间关联性:展示数据在地理空间上的分布,帮助发现地区间的关联和模式。
- 便于比较:圆形的大小或颜色直观地比较不同地区的数据差异,识别高低趋势。
- 灵活性高:结合多种数据维度,增强数据表达的丰富性。
- 互动性:借助现代可视化工具,实现交互式探索,提高数据分析效率。
局限
- 数据重叠问题:在数据密集区域,圆形可能会相互覆盖,导致信息丢失或误解。
- 环境依赖性:涟漪图适用于大范围地理数据展示,对于小范围或高精细数据效果有限。
- 视觉误导:圆形大小的感知容易受到视觉比例的影响,需谨慎设置比例关系,避免数据解读偏差。
- 技术要求:高质量涟漪图的制作需要一定的编程和数据处理能力,对非专业人员存在门槛。
- 动态性限制:静态涟漪图无法实时反映数据变化,需要结合其他技术实现动态展示。
未来发展与应用前景
随着大数据、人工智能和云计算技术的快速发展,涟漪图在医学领域的应用前景十分广阔。
1. 实时监控与预警
通过结合实时数据流,涟漪图可以用于疾病的实时监控与预警。例如,在疫情防控中,基于实时病例数据的涟漪图能够即时展示疫情的蔓延趋势,辅助决策者迅速采取防控措施,有效遏制疫情扩散。
2. 深度数据分析
通过整合更多维度的数据,如人口密度、经济水平、交通网络等,涟漪图可以进行更深层次的分析,揭示医疗资源分布背后的复杂因素,为政策制定提供科学依据。
3. 高级可视化技术融合
随着虚拟现实(VR)和增强现实(AR)技术的发展,涟漪图的表现形式将更加丰富和立体,用户体验将得到进一步提升。通过沉浸式的可视化体验,医务人员和研究人员可以更直观地理解复杂数据,提升分析和决策效率。
4. 跨领域应用
涟漪图不仅限于医疗领域,还可以广泛应用于公共卫生管理、医疗教育、健康研究等多个领域。例如,在公共卫生管理中,涟漪图可以用于展示疫苗接种率分布;在医疗教育中,可以用于展示各地区医疗资源与教育资源的关系。
结语
涟漪图作为一种直观、有效的可视化工具,在医学数据分析与决策中展现出巨大潜力。通过清晰呈现地理分布、突出数据集中区域以及便于比较地区差异,涟漪图不仅提升了数据的可理解性,也为医疗资源规划、疾病监测与防控以及医学研究提供了重要支持。
尽管存在一定的局限性,但随着技术的不断进步,涟漪图将在医学可视化领域发挥越来越重要的作用。未来,涟漪图将与更多先进技术融合,为医学研究和公共健康管理带来更加精准和高效的解决方案。通过不断优化和创新,涟漪图必将成为医学数据可视化不可或缺的重要工具,助力医疗事业的持续发展与进步。