2080-ti显卡复现
源代码地址 Jingkang50/OpenPSG: Benchmarking Panoptic Scene Graph Generation (PSG), ECCV'22 (github.com)
安装 pytorch =1.7版本 cuda=10.1
按照readme的做法安装
我安装的过程如下图所示,这个截图是到了pip install openmim这一步
下一步
下一步
这一步报错
下两步
报错
原因是因为缺少缺少 libgthread-2.0.so.0
库文件
安装这个库
sudo apt-get update
sudo apt-get install -y libglib2.0-0
设置PYTHONPATH export PYTHONPATH=$PYTHONPATH:/hy-tmp/OpenPSG-main(一定要设置这个)
克隆仓库
git clone https://github.com/cocodataset/panopticapi.git
# 进入仓库目录
cd panopticapi
# 使用pip进行本地安装
pip install .
接下来 继续运行
python -m pdb -c continue tools/train.py hy-tmp/OpenPSG-main/configs/motifs/panoptic_fpn_r50_fpn_1x_sgdet_psg.py
报错 继续安装库 pip install h5py xmltodict graphviz
pip install yapf==0.31.0
pip install mmcv-full
在psg.py的第四行修改数据 的路径,目前是我换好的路径
运行程序
python -m pdb -c continue tools/train.py configs/motifs/panoptic_fpn_r50_fpn_1x_sgdet_psg.py
正常运行
pip install wandb
在原始代码网页下载pretrained-models 并放入work_dir/checkpoints这个文件夹里面
把dataset里的coco数据集和rsg数据集下载放入data文件夹里面,这个是在psg.py里面修改的路径,第四行和第六行
选择wandb时 设置为3
然后就是正常运行啦!
这个是正常运行的显卡占用情况(表示正在运行train)