Benchmarking Panoptic Scene Graph Generation (PSG), ECCV‘22 场景图生成,利用PSG数据集

2080-ti显卡复现

源代码地址  Jingkang50/OpenPSG: Benchmarking Panoptic Scene Graph Generation (PSG), ECCV'22 (github.com)

安装 pytorch =1.7版本 cuda=10.1

按照readme的做法安装

我安装的过程如下图所示,这个截图是到了pip install openmim这一步

下一步

下一步

这一步报错

下两步

报错

原因是因为缺少缺少 libgthread-2.0.so.0 库文件  

安装这个库

sudo apt-get update
sudo apt-get install -y libglib2.0-0

 

设置PYTHONPATH   export PYTHONPATH=$PYTHONPATH:/hy-tmp/OpenPSG-main(一定要设置这个)

克隆仓库
git clone https://github.com/cocodataset/panopticapi.git

# 进入仓库目录
cd panopticapi

# 使用pip进行本地安装
pip install .

接下来 继续运行

python -m pdb -c continue tools/train.py hy-tmp/OpenPSG-main/configs/motifs/panoptic_fpn_r50_fpn_1x_sgdet_psg.py

报错 继续安装库 pip install h5py xmltodict graphviz 

pip install yapf==0.31.0
pip install mmcv-full

在psg.py的第四行修改数据 的路径,目前是我换好的路径

运行程序

python -m pdb -c continue tools/train.py  configs/motifs/panoptic_fpn_r50_fpn_1x_sgdet_psg.py

正常运行

pip install wandb
 

在原始代码网页下载pretrained-models 并放入work_dir/checkpoints这个文件夹里面

把dataset里的coco数据集和rsg数据集下载放入data文件夹里面,这个是在psg.py里面修改的路径,第四行和第六行

选择wandb时 设置为3

然后就是正常运行啦!

这个是正常运行的显卡占用情况(表示正在运行train)


 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值