【fmri】dpabi对fALFF和ReHo的双样本t检验(一)

本文指导新手如何在dpabi中进行fALFF和ReHo的双样本t检验,涉及图像选择、协变量处理和参数设置等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新手发布,如果有错误或者补充,欢迎捉虫~

dpabi的双样本t检验计算

使用做过Quality Control之后生成的subjectlist对falff和reho进行筛选,得到进入分析的falff和reho文件(一般为sz开头,如果在falff之前做过smooth建议使用z开头的),分别放置在相应的文件夹中
在这里插入图片描述
在MATLAB中打开dpabi,点击Statistical Analysis

在这里插入图片描述
在最上面的框中选择Two-sample T-test进入双样本t检验界面

在这里插入图片描述
1、Group Images: 点击Add,选择进入分析的图像所在两个(Group1&Group2)文件夹【注意文件夹中只能有要分析的一组图像,后缀nii】。如果想要更改图像,点击Remove移除所选图像

2、Covariate Images: 点击Add,添加想要去除影响的影像部分,例如灰质白质【一般不添加】【注意协变量的顺序一定要和Group Image的顺序相同
3的添加示例

3、Text Covariates: 点击Add,添加想要去除影响的文本协变量,例如头动、性别、年龄,将所有要剔除的文本协变量放在一个txt文件中(一组一个txt文件,一个txt文件包含三列数据,分别为该组被试的性别、年龄、头动信息(如上图))【注意协变量的顺序一定要和Group Image的顺序相同

在这里插入图片描述

4、Mask File:mask制作

5、Output Dir: 设置输出路径

在这里插入图片描述

6、Permutation test: 点击Permutation test出现上图界面,不用更改任何操作点击accept【如果要做Permutation test检验的话才点击,Permutation test跑的比较慢,因为这里设定了5000次就要跑5000次,依照严老师的说法是如果结果多Permutation test就比其他矫正方法更宽松,如果结果少Permutation test就比其他矫正方法更严格】【我一般不用这个,所以一般不选Permutation test,等之后我学习了再在这里补充】

7、prefix: 选择输出名称

在这里插入图片描述
8、run: 运行,运行结果如上,之后可以在dpabi view或者spm中查看结果见dpabi对fALFF和ReHo的双样本t检验(二)

### 双样本T检验fMRI数据分析中的应用 #### 数据准备 确保已经完成了个体级别的预处理工作,包括时间校正、空间标准化以及平滑等过程。对于双样本T检验而言,重点在于对比两组被试者之间的差异。 #### 组织输入数据 将不同实验条件下获取的功能图像按照所属类别分别整理好,每类形成独立的数据集以便后续软件能够识别并加载这些资料[^2]。 #### 使用SPM12执行双样本T检验的具体流程 ##### 创建第二级模型(Specify 2nd-Level Model) 选择`Specify 2nd-level`选项卡,在弹出窗口中指定为“Two Sample t-test”。此时需导入之前经过级分析得到的参数估计图(通常是以`.nii`结尾的文件),同时设置相应的分组信息,即明确哪些受试属于第组,哪些归属于第二组。 ##### 参数设定 确认所有待比较的地图均已正确载入后,还需指明各地图对应的样本量大小,并可选地加入协变量调整可能存在的混淆因素影响。如果前期已做过充分控制,则此步骤可以省略。 ##### 执行估计(Estimate) 完成上述配置之后点击“estimate”,让程序自动计算两个群体间的平均效应及其标准误,从而构建用于推断统计的基础矩阵。 ##### 结果展示(Results) 最后进入结果界面,通过定义阈值等方式筛选显著性区域,可视化呈现两组大脑活动模式上的异同之处。值得注意的是,应当谨慎解释所得结论,考虑到多重比较带来的假阳性风险,适当运用FDR或Bonferroni矫正方法提高发现的真实性。 ```matlab % MATLAB代码片段示意如何调用SPM函数实现双样本T检验 spm_jobman('initcfg'); S = spm_get(V, 'sPM.img', 'Select images to compare'); for i=1:length(S), V(i)=spm_vol(S{i}); end; Vc = struct('fname',{S}, 'vols',num2cell(V)); Cd = {cond1 cond2}; % 定义条件标签 D = [grp1 grp2]; % 各自对应的人数向量 spm_spm('Estimate',[Vc{:}], Cd, D); ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值