在AI模型快速发展的今天,如何根据业务需求微调大模型成为了许多开发者关注的热点问题。在本教程中,我们将详细介绍如何使用OpenAI的API微调GPT模型,并提供示例代码,帮助你快速上手。
1 开发基本要求
基本要求
- Python3
- pip 包管理器
首先,你需要确保环境中已安装 Python 和 pip。如果没有,请根据系统配置进行安装。
克隆仓库
git clone https://github.com/yuyou-dev/ChatGPT-Fine-tuning/
这将会克隆包含所有代码的仓库到本地。
安装依赖
进入仓库目录后,执行以下命令安装所需依赖:
pip install -r requirements.txt
2. 数据准备
在开始微调之前,首先需要准备好用于训练的数据。数据格式的要求如下:
- 每条记录需要是对话式的结构(可参考仓库中的demo数据)。
预处理和格式化数据
在这里,我们将会使用Python脚本对原始数据进行预处理并格式化成合适的结构:
import json
with open('training_data.txt', 'r', encoding='utf-8') as file:
content = file.read()
paragraphs_level1 = content.split('\n\n\n')
messages = []
for paragraph_level1 in paragraphs_level1:
paragraphs_level2 = paragraph_level1.split('\n\n')
message = {"messages": []}
message["messages"].append({"role": "system", "content": "你是翻译员"})
for i, paragraph in enumerate(paragraphs_level2):
role = "user" if i % 2 == 0 else "assistant"
message["messages"].append({"role": role, "content": paragraph})
messages.append(message)
with open('chat_data.jsonl', 'w', encoding='utf-8') as f:
for message in messages:
f.write(json.dumps(message, ensure_ascii=False) + '\n')
3. 调用OpenAI API
接下来,你需要调用OpenAI的API接口,将格式化好的数据上传到平台,并开始微调过程。
上传数据文件
import requests
import openai
api_key = 'your-api-key'
headers = {
"Authorization": f"Bearer {api_key}"
}
files = {
"file": open("chat_data.jsonl", "rb")
}
response = requests.post("https://api.openai.com/v1/files", headers=headers, files=files)
file_id = response.json()["id"]
启动微调任务
一旦数据上传成功,使用以下代码启动微调:
data = {
"training_file": file_id,
"model": "gpt-3.5-turbo-0613"
}
response = requests.post("https://api.openai.com/v1/fine_tuning/jobs", headers=headers, json=data)
fine_tuning_job_id = response.json()["id"]
4. 查看微调状态和结果
通过API检查模型的训练状态:
response = requests.get(f"https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}", headers=headers)
fine_tuned_model = response.json().get("fine_tuned_model")
5. 测试微调后的模型
当微调完成后,可以通过以下代码测试微调后的模型效果:
response = openai.ChatCompletion.create(
model=fine_tuned_model,
messages=[
{"role": "system", "content": "你是翻译员"},
{"role": "user", "content": "请翻译以下句子:全球最大的中文搜索引擎,致力于让网民更便捷地获取信息,找到所求。"}
]
)
print(response.choices[0].message.content)
6. 总结
通过本教程,你已经学习了如何准备数据并使用OpenAI的API微调GPT模型。通过合理的微调,你可以为特定的业务场景创建一个更加智能和精准的模型。
完整代码可在GitHub仓库找到。如果有任何问题,欢迎在评论区留言讨论。