numpy是Python进行数据分析时经常使用的第三方库,常用来存储和处理大型矩阵。
ndarray是一个快速灵活的大数据集容器,下面用一些简单例子来描述一下。(为了方便代码与运行结果都在同一个框里)
| array() | 将输入的数据转换成ndarray |
| asarray() | 将输入转换成ndarray |
| arange() | 与range()类似,但返回一个ndarray而不是list |
| empty() | 创建一个新的数组,但只分配空间,不填充数值 |
>>> import numpy as np
>>> data=[1,2,3]
>>> ary = np.array(data)
>>> a
array([1, 2, 3])
dtype与type()作用类似。将数据转化为浮点数。
>>> ary=np.array(data,dtype=np.float64)
>>> ary
array([1., 2., 3.])
如果是由一组等长列表组成的列表,将直接转换成一个多维数组:
>>> data1=[[1,2,3],[4,5,6]]
>>> ary=np.array(data1)
>>> ary
array([[1, 2, 3]
本文介绍了Python中数据分析的重要库NumPy,重点讲解了ndarray对象的基础操作,包括数据类型转换、数组创建、形状查看、数组运算、索引切片、多维数组查找以及矩阵的统计操作如置换、求和与平均值。通过实例演示,帮助读者掌握NumPy的基本用法。
最低0.47元/天 解锁文章

2779

被折叠的 条评论
为什么被折叠?



