
迁移学习
文章平均质量分 86
机器猫001
这个作者很懒,什么都没留下…
展开
-
基于子空间结构保持的迁移学习方法MLSSM
0、前言 在前期博文中本人引出了无监督特征对齐的迁移学习理论框架地址,本文在该篇博文基础上提出一种基于子空间结构保持的迁移学习算法(命名为:MLSSM)。主要思想:首先提取目标域数据的子空间结构,子空间结构表征了目标域数据的结构分布特性;然后对源域数据进行线性转换,使得转换后的数据与目标域数据具有相同的子空间结构1、 子空间结构的获取数据定义: ① 源域: ② 目标域: ③源域转换矩阵:子空间结构获取: 为了获取数...原创 2022-04-21 16:32:36 · 2488 阅读 · 0 评论 -
无监督特征对齐的迁移学习理论框架
0、前言 文献《基于无监督特征对齐的变负载下滚动轴承故障诊断方法》引入迁移学习中能够实现无监督领域适应的子空间对齐(subspace alignment,SA)算法并进行改进,提出将核映射方法与 SA 算法相结合。将训练数据和测试数据映射到相同高维空间,在高维空间的子空间进行特征对齐,以增加数据类间区分性,实现不同负载下源领域特征向目标领域特征对齐。具体理论可参考该文献。1、无监督特征对齐 首先,究竟应该如何理解“对齐”?先看下述分析。 无监督特征对齐...原创 2021-12-13 15:41:02 · 5390 阅读 · 5 评论 -
自适应迁移学习核极限学习机用于预测
目录0、前言1、自适应迁移学习核极限学习机原理1.1 结构风险最小化1.2 联合分配1.3 流行正则化1.4 核极限学习机模型参数求解公式1.5 自适应迁移学习核极限学习机训练1.6 说明2、分类效果0、前言 引入迁移学习知识,通过迭代的方式循环更新核极限学习机。首先训练核极限学习机为目标域预测伪输出值,利用联合分布适配对齐两域分布,以减小分布差异;其次,通过流形正则化对目标域数据进一步利用,挖掘数据的潜在分布几何结构,学习目标域数据分布信息;...原创 2021-11-24 10:53:56 · 1223 阅读 · 4 评论 -
自适应迁移学习核极限学习机KELM用于分类
0、前言 训练基分类器(核极限学习机)为目标域预测伪标签,利用联合分布适配对齐两域分布,以减小分布差异;其次,通过流形正则化对目标域数据进一步利用,挖掘数据的潜在分布几何结构,学习目标域数据分布信息;最后,利用在结构风险最小化框架下建立的分类器结合上述两步学习策略,迭代更新伪标签获得最优系数矩阵,实现自适应迁移学习核极限学习机分类器构建。1、自适应迁移学习核极限学习机原理 给定标记源域: 目标域: 假定源域与目标域的特征空间相同:...原创 2021-11-08 11:01:52 · 2682 阅读 · 6 评论 -
迁移学习专栏——开篇:迁移学习发展分析
一、迁移学习发文趋势 图1可以看出,迁移学习、深度学习、图像识别、卷积神经网络和深度迁移学习都是在2016年开始受到学者们的广大关注度,发文量也开始大幅度上涨。原创 2021-10-26 11:57:51 · 1485 阅读 · 0 评论