
深度模型
文章平均质量分 81
机器猫001
这个作者很懒,什么都没留下…
展开
-
天鹰优化的半监督拉普拉斯深度核极限学习机用于分类
天鹰优化的半监督拉普拉斯深度核极限学习机分类方法:首先采用拉普拉斯半监督深度ELM-AE实现抽象特征提取,然后将提取的抽象特征用来训练一个天鹰优化的核极限学习机实现分类。半监督拉普拉斯深度核极限学习机实际上是由半监督拉普拉斯多层极限学习机+KELM构成.........原创 2022-08-02 16:41:00 · 804 阅读 · 1 评论 -
matlab的2DCNN、1DCNN、BP、SVM故障诊断与结果可视化
0、前言 本文针对十分类轴承故障诊断问题,采用四种经典方法2DCNN、1DCNN、BP、SVM进行建模,并对比最终结果。1、理论介绍 BP和SVM理论不再进行描述。1DCNN指的是采用一维卷积,2DCNN采用二维卷积,相关理论请参考论文《一种用于轴承故障诊断的二维卷积神经网络优化方法》。该论文提出一种新的数据预处理方式,将原始时域信号数据转换成二维灰度图像来提取转换后的图像特征,消除手工特征的影响;同时,在验证分类前对实验采集故障数据集添加了降噪处理,并对卷积神经网络......原创 2022-05-13 17:00:28 · 4486 阅读 · 1 评论 -
基于时序模式注意力机制(TPA)的长短时记忆(LSTM)网络TPA-LSTM的多变量输入风电功率预测
0 前言1、TPA理论注意力机制(Attention mechanism)通常结合神经网络模型用于序列预测,使得模型更加关注历史信息与当前输入信息的相关部分。时序模式注意力机制(Temporal Pattern Attention mechanism, TPA)由 Shun-Yao Shih 等提出(Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi. Temporal Pattern Attention for Multivariate Time Series原创 2022-04-15 16:32:47 · 16652 阅读 · 19 评论 -
子空间结构保持的多层极限学习机自编码器(ML-SELM-AE)
0、前言 非线性无监督降维方法极限学习机自编码器 (Extremelearningmachine,ELM-AE) 因其学习速度快、泛化性能好,近年来被广泛应用于降维及去噪。为使高维数据投影至低维空间后仍能保持原有子空间结构,提出基于子空间结构保持的多层极限学习机自编码器降维方法 (Multilayerextremelearningmachineautoencoderbasedonsubspacestructurepreserving,ML-SELM-AE)。该方...原创 2022-04-18 14:03:09 · 1281 阅读 · 2 评论