基于时序模式注意力机制(TPA)的长短时记忆(LSTM)网络TPA-LSTM的多变量输入风电功率预测

1、TPA理论

        注意力机制(Attention mechanism)通常结合神经网络模型用于序列预测,使得模型更加关注历史信息与当前输入信息的相关部分。时序模式注意力机制(Temporal Pattern Attention mechanism, TPA)由 Shun-Yao Shih 等提出(Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi. Temporal Pattern Attention for Multivariate Time Series Forecasting[J]. 2019.arXiv:1809.04206),其通过使用 CNN 滤波器提取输入信息中的定长时序模式,使用评分函数确定各时序模式的权值,根据权值的大小得到最后的输出信息。TPA机制的框图如图 1所示

图1 TPA机制

         TPA 机制的实现包含以下三个过程,具体参考文献《Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi. Temporal Pattern Attention for Multivariate Time Series Forecasting》

(1)时序模式的获取

### TPA注意力机制代码实现 在TPA-LSTM模型中,自注意力机制用于增强对时间序列数据的理解。通过计算输入序列各时刻的重要性权重,可以更精准地捕捉到关键的时间点信息[^1]。 下面是一个简单的Python代码示例来展示如何实现TPA注意力机制: ```python import torch import torch.nn as nn import torch.nn.functional as F class TPALSTM(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(TPALSTM, self).__init__() self.hidden_size = hidden_size # LSTM层 self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, batch_first=True) # 定义全连接层作为投影矩阵W_a self.attention_weights = nn.Linear(hidden_size, 1) # 输出层 self.fc_out = nn.Linear(hidden_size, output_size) def forward(self, x): lstm_output, (h_n, c_n) = self.lstm(x) # 计算未标准化的attention scores attn_scores = self.attention_weights(lstm_output).squeeze(2) # 使用softmax函数得到最终的attention weights attn_weights = F.softmax(attn_scores, dim=1).unsqueeze(-1) # 对LSTM输出加权求和获得context vector context_vector = torch.sum(lstm_output * attn_weights, dim=1) out = self.fc_out(context_vector) return out, attn_weights ``` 此代码实现了带有TPA注意力机制LSTM网络结构。`lstm()` 函数负责处理输入序列并生成隐藏状态;接着 `attention_weights()` 将这些隐藏状态映射成单一维度向量表示每个时间步长的重要性得分;最后利用 softmax() 来规范化这些分数从而形成有效的概率分布形式即为 attention weight,在此基础上再乘回原来的隐含状态上完成上下文向量构建过程。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值