基于时序模式注意力机制(TPA)的长短时记忆(LSTM)网络TPA-LSTM的多变量输入风电功率预测

1、TPA理论

        注意力机制(Attention mechanism)通常结合神经网络模型用于序列预测,使得模型更加关注历史信息与当前输入信息的相关部分。时序模式注意力机制(Temporal Pattern Attention mechanism, TPA)由 Shun-Yao Shih 等提出(Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi. Temporal Pattern Attention for Multivariate Time Series Forecasting[J]. 2019.arXiv:1809.04206),其通过使用 CNN 滤波器提取输入信息中的定长时序模式,使用评分函数确定各时序模式的权值,根据权值的大小得到最后的输出信息。TPA机制的框图如图 1所示

图1 TPA机制

         TPA 机制的实现包含以下三个过程,具体参考文献《Shih, Shun-Yao, Sun, Fan-Keng, Lee, Hung-yi. Temporal Pattern Attention for Multivariate Time Series Forecasting》

(1)时序模式的获取

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值