
优化算法
文章平均质量分 68
机器猫001
这个作者很懒,什么都没留下…
展开
-
麻雀优化算法SSA及其改进策略
本文罗列常见改进策略,并将其应用于麻雀优化算法(SSA)的改进上,并对比改进后的效果。原创 2022-11-10 10:16:25 · 14099 阅读 · 46 评论 -
融合Cat混沌映射+精英反向策略+tent扰动+柯西变异的改进麻雀优化算法(IAMSSA)
本博文仿真验证融合精英策略tent扰动和柯西变异的改进麻雀优化算法(IAMSSA)在函数极值寻优上的效果。改进点为:Cat混沌映射初始化种群、精英反向学习策略、动态调整发现者数量和意识到有危险麻雀数量 、改进探索者位置更新公式、tent扰动和柯西变异。......原创 2022-08-05 10:45:03 · 3261 阅读 · 2 评论 -
优化算法优化支持向量机(SVM)进行分类
采用常用优化算法优化SVM参数进行分类,如:GWO、WOA、AFSA、AO、BAT、GTO、HBA、MPA、POA、SSA、SMA、jSSA、HHO、EO、AOA、SO等优化方法。原创 2022-08-03 15:33:27 · 4168 阅读 · 1 评论 -
融合反向学习与 Levy 飞行策略的改进麻雀优化算法ISSA
文章《改进的麻雀搜索优化算法及其应用》针对麻雀搜索算法(SSA)在求解目标函数最优解时,种群多样性不丰富,易陷于局部最优和多维函数求解精度差等问题,提出改进的麻雀搜索算法(ISSA)。首先,利用初始化种群,增加种群多样性;然后,对进行动态调整,提高算法的求解精度;最后,对侦查预警的麻雀位置更新公式引入提高算法寻优能力和跳出局部极值的能力。本文复现了该论文所提的改进麻雀搜索算法(ISSA),并将其与常规GA、PSO、SSA算法进行对比。......原创 2022-08-01 15:59:35 · 4308 阅读 · 2 评论 -
基于HHO/GTO/EO/SCA/BOA/WOA/HBA/PSOBOA/HPSOBOA等9种优化算法优化LSTM的时间序列预测
原创 2022-02-08 19:08:59 · 3012 阅读 · 5 评论 -
黏菌优化算法SMA与算术优化算法AOA及其联合改进
0、简介 黏菌优化算法(Smile Mould Algorithm, SMA)和算术优化算法(Arithmetic Optimization Algorithm,AOA)是最近提出的新型元启发式优化算法。SMA 算法具有较强的全局探索能力,但迭代后期振荡作用较弱,易陷入局部最优,且收缩机制不强,导致收敛速度慢。AOA 算法利用乘除算子进行位置更新,随机性强,具有较好的避免早熟收敛能力。针对上述问题,文章《融合随机反向学习策略的黏菌与算术混合优化算法》将两种算法结合并利用随机反向学习策略提高收敛速度..原创 2022-02-08 18:44:44 · 2045 阅读 · 3 评论 -
基于黏菌优化算法SMA优化LSTM的时间序列预测
0 引言 基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用黏菌优化算法AOA优化LSTM网络超参数,建立SMA-LSTM模型, 实例验证表明 , SMA-LSTM 模型的预测效果明显提高。1 原理1.1 LSTM原理1.2 黏菌优化算法 黏菌优化算法Slime Mould Algorithm(SMA)是由 Li等人于 2020年...原创 2022-02-08 15:41:31 · 2346 阅读 · 7 评论 -
基于算术优化算法AOA优化LSTM的时间序列预测
0 引言 基于LSTM进行时间序列预测方法简单有效。LSTM的出现为时间序列预测提供了一个新的研究方向。然而,与大部分网络模型一样,LSTM效果受其超参数设置的影响。为此,本文采用算术优化算法AOA优化LSTM网络超参数,建立AOA-LSTM模型, 实例验证表明 , AOA-LSTM 模型的预测效果明显提高。1 原理1.1 LSTM原理1.2 算术优化算法算术优化算法(Arithmetic Optimization Algorithm, AOA)是...原创 2022-02-08 15:32:47 · 2271 阅读 · 3 评论 -
基于爬行动物搜索RSA优化LSTM的时间序列预测
Reptile Search Algorithm (RSA)原创 2022-02-08 15:25:23 · 993 阅读 · 2 评论 -
多元宇宙算法MVO及其改进复现
0、MVO简介 群智能技术是一种基于群体迭代搜索的随机式优化方法,因其潜在的并行性、分布式搜索和全局搜索能力较强等特点,成为近年来的研究热点。不同学者针对上述群体仿生优化方法,在算子改进、算子融合、搜索技术、隔离技术等方面进行了大量的研究,数值实验表明这些基本的启发式方法针对低维度问题具有一定的优越性,但面对大规模问题也存在着陷入局部极值、优化能力一般、收敛精度不高等问题。 文献《Multi-verse optimizer: A nature-inspired algor...原创 2022-01-20 11:19:15 · 5968 阅读 · 2 评论