麻雀优化算法SSA及其改进策略

0、前言

     本文罗列常见改进策略,并将其应用于麻雀优化算法(SSA)的改进上,并对比改进后的效果。

1、ISSA原理

       具体 请参考文献《改进的麻雀搜索优化算法及其应用》。

       原始SSA更新方式如下:

        Xbestj (t)表示当前全局最佳位置,β 为服从均值为 0,方差为 1 的正态分布随机数的步长控制参数,K∈[-1,1]表示麻雀运动方向,也是步长控制参数,fi表示当前麻雀的适应度值,fg 和fw 表示当前全局最优值和最差值,e 为一个常数,是为了避免分母为 0。可以看出步长控制参数 β 和 K在平衡全局搜索能力与局部开发能力方面发挥重要作用。 

2、改进策略

 2.1 反向学习策略(改善随机生成初始化种群分布不均、种群多样性减少问题)

       SSA 采用的是随机生成初始种群,生成的种群分布不均匀,会导致种群多样性减少,种群质量不高,影响算法的收敛速度,因此采用反向学习策略能克服这一问题。利用反向学习策略生成种群的主要思想:首先随机生成初始种群,然后根据初始种群生成其反向种群,从中选择较优的种群作为下一代种群。反向学习策略会选择更靠近的个体作为种群的最初个体,这样每个个体都离最优解更近一步,以便提高种群的所有个体收敛速度。并且反向学习策略还可以通过搜索更多有效区域来提高群体的多样性,增强算法的全局搜索能力。

2.2 步长因子动态调整(减少出现局部最优的概率)

        在 SSA 算法中,图1中的步长控制参数 β 和 K在平衡全局搜索能力与局部开发能力方面发挥重要作用,但因为 β 和 K 都为随机数,无法满足算法在解空间的探索,可能导致 SSA 陷入局部最优,于是对步长控制参数 β 和 K 进行优化,较大的控制参数便于全局搜索,较小的控制参数促进局部开发。

        对步长控制参数 β 和 K 的改进如下所示:

评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值