Pytorch学习笔记:torchvision.datasets..CIFAR10()

torchvision.datasets.CIFAR10()是PyTorch中用于加载CIFAR-10数据集的函数,该数据集包含60000张32x32的彩色图像,分为10个类别,每个类别有6000张图像。其中50000张图像用于训练,10000张图像用于测试。下面是torchvision.datasets.CIFAR10()函数中各个参数的详细介绍:

  1. root(字符串类型):

    • 作用:指定数据集下载后存放的本地路径。
    • 示例root='./data',表示数据集将被下载并存储在当前目录下的data文件夹中。
  2. train(布尔类型):

    • 作用:指定是否加载训练集。
    • 取值True表示加载训练集,False表示加载测试集。
    • 示例train=True,表示加载CIFAR-10的训练集。
  3. transform(可选,函数类型):

    • 作用:指定对数据集中的图像进行变换的函数或操作。
    • 常见变换:包括转换为张量(ToTensor())、归一化(Normalize())、裁剪(RandomCrop())等。
    • 示例transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),表示先将图像转换为张量,然后进行归一化处理。
  4. target_transform(可选,函数类型):

    • 作用:指定对数据集中的标签进行变换的函数。
    • 示例:通常较少使用,因为CIFAR-10的标签已经是整数形式,可以直接用于分类任务。
  5. download(布尔类型):

    • 作用:指定是否从互联网上下载数据集。
    • 取值True表示如果数据集尚未下载,则从互联网下载;如果数据集已经下载,则不会重新下载。False表示不下载数据集。
    • 示例download=True,表示如果数据集尚未下载,则进行下载。
import torchvision.datasets as datasets
import torchvision.transforms as transforms

# 定义数据变换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)

# 加载测试集
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

CIFAR-10数据集包括60000张32*32的RGB彩色图片,其中50000张用于训练,10000张用于测试(交叉验证)。你可以使用以下代码准备CIFAR-10数据集的验证集和训练集: ```python import torchvision # 下载并准备训练集 train_data = torchvision.datasets.CIFAR10( root='../data', train=True, transform=torchvision.transforms.ToTensor(), download=True) # 下载并准备测试集 test_data = torchvision.datasets.CIFAR10( root='../data', train=False, transform=torchvision.transforms.ToTensor(), download=True) ``` 通过使用上述代码,你可以从网上自动下载并准备好CIFAR-10数据集的测试集和训练集。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [cifar 10数据集](https://download.csdn.net/download/pugao23/10372468)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Pytorch---- CIFAR10实战(训练集+测试集+验证集)完整版,逐行注释-----学习笔记](https://blog.csdn.net/qq_38737428/article/details/121931464)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值