目录
✏️一元线性回归/univariate linear regression
✏️多元线性回归/multivariate linear regression
第三章 线性模型
0️⃣基本形式
给定由d个属性描述的示例 ,其中 是 是第 个属性上的取值,线性模型/linear model 试图学得一个通过属性的线性组合来进行预测的函数,即
向量形式:
1️⃣线性回归
给定数据集,其中,. “线性回归/linear regression”试图学得一个线性模型以尽可能准确地预测实值输出标记。
💡如何确定 和 呢?
第二章中说到过均方误差是回归任务中最常用的性能度量,因此让均方误差最小化,即
均方误差有非常好的几何意义,它对应了常用的欧几里得距离或简称“欧氏距离/Euclidean distance”。基于均方误差最小化来进行模型求解的方法称为“最小二乘法/least square method”。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小。
✏️一元线性回归/univariate linear regression
此时使得 最小化即对 和 分别求偏导对应零点。
令公式(3.5)为零:
得到
令公式(3.6)为零:
得到
✏️多元线性回归/multivariate linear regression
✏️广义线性回归模型
2️⃣对数几率回归
💡讨论了回归任务,分类任务怎么办?
答案蕴含在式(3.15)的广义线性模型中:只需要找一个单调可微函数将分类任务的真实标记 与线性回归模型的预测值联系起来。
3️⃣线性判别分析
线性判别分析/Linear Discriminant Analysis(简称LDA)是一种经典的线性学习方法,在二分类问题上因为最早由[Fisher,1936]提出,亦称“Fisher判别分析”。