机器学习笔记(二)线性模型

目录

第三章 线性模型

0️⃣基本形式

1️⃣线性回归

✏️一元线性回归/univariate linear regression

✏️多元线性回归/multivariate linear regression

✏️广义线性回归模型

2️⃣对数几率回归

3️⃣线性判别分析

4️⃣多分类学习

5️⃣类别不平衡问题


第三章 线性模型

0️⃣基本形式

给定由d个属性描述的示例 x=(x_{1};x_{2};...;x_{d}),其中 x_{i} 是 \mathbf{x} 是第 i 个属性上的取值,线性模型/linear model 试图学得一个通过属性的线性组合来进行预测的函数,即

f(\mathbf{x})=w_{1}x_{1}+w_{2}x_{2}+...w_{d}x_{d}+b

向量形式:

f(\mathbf{x})=w^{\mathbf{T}}\mathbf{x}+b

1️⃣线性回归

给定数据集D=\left \{(\mathbf{x}_{1},y_{1}),(\mathbf{x}_{2},y_{2}),...,(\mathbf{x}_{m},y_{m})\right \},其中\mathbf{x}_{i}=(x_{i1};x_{i2};...;x_{id})y_{i}\in \mathbb{R}. “线性回归/linear regression”试图学得一个线性模型以尽可能准确地预测实值输出标记。

💡如何确定 w 和 b 呢?

第二章中说到过均方误差是回归任务中最常用的性能度量,因此让均方误差最小化,即

均方误差有非常好的几何意义,它对应了常用的欧几里得距离或简称“欧氏距离/Euclidean distance”。基于均方误差最小化来进行模型求解的方法称为“最小二乘法/least square method”。在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小。

✏️一元线性回归/univariate linear regression

 此时使得 E_{(w,b)}=\Sigma _{i=1}^{m}(y_{i}-wx_{i}-b)^{2} 最小化即对 w 和 b 分别求偏导对应零点。

令公式(3.5)为零:

得到 

 令公式(3.6)为零:

 得到

✏️多元线性回归/multivariate linear regression

✏️广义线性回归模型

2️⃣对数几率回归

💡讨论了回归任务,分类任务怎么办?

答案蕴含在式(3.15)的广义线性模型中:只需要找一个单调可微函数将分类任务的真实标记 y 与线性回归模型的预测值联系起来。

 

3️⃣线性判别分析

线性判别分析/Linear Discriminant Analysis(简称LDA)是一种经典的线性学习方法,在二分类问题上因为最早由[Fisher,1936]提出,亦称“Fisher判别分析”。

  

4️⃣多分类学习

5️⃣类别不平衡问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LabulaH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值