CV计算机视觉——segmentation像素分割

本文介绍了如何使用Python的skimage库中的SimpleLinearIterativeClustering(SLIC)算法对图像进行分割,展示了不同数量的超级像素(n_segments)对图像分割效果的影响,并展示了结果示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个cv系列是跟Oxford的Jens Rittscher教授每周日上课留的课后作业

先看结果:

from skimage.segmentation import slic, mark_boundaries
from skimage.io import imread, imsave
from skimage import img_as_ubyte  # 导入图像转换函数
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False


image = imread('input_image.jpg')

# 使用不同的参数设置应用 SLIC 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值