✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连 ✨
✨个人主页欢迎您的访问 ✨期待您的三连✨
1. 算法基本原理✨✨
实例分割(Instance Segmentation)是计算机视觉中的一项重要任务,它不仅要像语义分割那样为图像中的每个像素分配一个类别标签,还要区分同一类别中的不同实例。换句话说,实例分割既要解决“是什么”的问题,也要解决“是谁”的问题。
实例分割的典型算法包括:
-
Mask R-CNN:Mask R-CNN 是在 Faster R-CNN 的基础上扩展而来的,它在原有的边界框检测和分类任务之外,增加了一个分支来预测每个实例的像素级掩码。Mask R-CNN 通过 RoIAlign 层来精确地对齐特征图,从而生成高质量的掩码。
-
YOLACT:YOLACT(You Only Look At Coefficients)是一种实时实例分割算法。它将实例分割任务分解为两个并行的子任务:生成原型掩码和预测掩码系数。通过这种方式,YOLACT 能够在保持较高精度的同时实现实时处理。
-
SOLOv2:SOLOv2(Segmenting Objects by Locations)是一种基于位置的实例分割方法。它通过将图像划分为网格,并在每个网格位置预测实例掩码,从而实现高效的实例分割。
2. 数据集介绍及下载链接✨✨
实例分割任务通常需要大量的标注数据,以下是一些常用的数据集:
-
COCO(Common Objects in Context):COCO 是计算机视觉领域最常用的数据集之一,包含 80 个类别的物体,