论文阅读记 Reliability-Aware Contrastive Self-ensembling for Semi-supervised Medical Image Classification

论文标题:

Reliability-Aware Contrastive Self-ensembling for Semi-supervised Medical Image Classification

论文链接:

https://link.springer.com/chapter/10.1007/978-3-031-16431-6_71

代码链接:

https://github.com/Mwnic/RAC-MT


摘要

自集成框架已被证明是通过利用丰富的未标记数据进行半监督医学图像分类的强大范式。

然而,大多数自集成方法中使用的未标记数据的权重相等,当从不同人群、设备和环境获取的未标记数据之间存在差异时,这会对模型的分类性能产生不利影响。

本文贡献:

提出了一种新的可靠性感知对比自集成框架,能够选择性地利用可靠的未标记数据。

通过引入权重函数到平均教师范式中,将未标记数据的概率预测映射到反映其可靠性的相应权重上,有效提高了模型对可靠数据的依赖性,从而提升了分类性能。

Method

在此研究中,通过引入可靠性感知对比自集成框架,实现了益于半监督学习的新模式。以下是具体的方法结构:

 

可靠性感知对比均师模型

权重函数:权重函数的目的是将每个未标记数据的概率预测映射到一个独特的权重,这个权重估计了其可靠性。这样可以确保模型优先考虑那些更可靠的数据,从而提高整体学习效果。

可靠性感知一致性损失:这一部分中,设计了一种只强制可靠未标记数据在不同扰动下预测一致性的一致性损失。这样的设计可以优化模型对标签缺失情况下的处理能力。

可靠性感知对比损失:此损失函数专注于可靠未标记数据之间的连接,促进这些数据的归一化嵌入具有更好的类内紧凑性和类间可分性。

 

 目标函数:整个模型的目标是通过最小化等式中给出的包含监督损失、一致性损失与对比损失的综合目标函数,来调整模型参数,实现更好的学习效果。

 

优化

在模型优化过程中,通过迭代交替更新权重函数参数和网络参数,使模型能在保持数据可靠性评估的同时,有效地学习到数据特征。这种迭代方案帮助模型在探索数据结构信息的同时,也保证了在参数更新过程中不会偏离目标函数最优解。

这样的方法设计不仅提高了半监督学习中的分类精度,也增强了模型对未标记数据的利用效率和鲁棒性。通过在真实医疗图像数据集上进行测试,展示了所提方法的有效性与优越性。

 Experiment

在ISIC 2018皮肤数据集上的实验结果显示,与其他半监督学习方法相比,RAC-MT在有限的标记数据下(20%标记数据),具有更优的表现。具体而言,RAC-MT在特异性、精确度和F1分数等指标上都有显著提高,接近于全监督DenseNet模型使用100%标记数据所达到的性能。 

 

 

 

 Conclusion

本研究提出的可靠性感知对比自集成模型在半监督医学图像分类任务中表现优异,能够有效利用未标记数据的同时确保数据的可靠性。未来的工作将探索不同权重函数的效果,并将该框架应用于其他医学图像分类任务中。

 


想了解更多医学图像论文资料请移步公主👸号哦~~~后期将持续更新!!
关注我,让我们一起学习新知识,一起进步吧~~~

  • 25
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值