论文阅读记录 | Decoupled Consistency for Semi-supervised Medical Image Segmentation

  • Abstract

    • 背景: 通过充分利用未标注的数据,半监督学习(SSL)技术在医学图像分割中最近取得了令人瞩目的成果。伪标签生成和一致性正则化是利用未标注数据的两种有效策略。

    • 局限性:

      • 传统的伪标签生成方法会过滤掉低置信度的像素;

      • 一致性正则化不能充分利用高置信度和低置信度数据的优势。

    • 本文贡献:

      • 提出了一种新颖的解耦一致性半监督医学图像分割框架;

      • 动态阈值解耦预测数据:将预测数据解耦为一致部分和不一致部分;

      • 采用交叉伪监督方法优化一致部分的数据,提高模型性能;

      • 进一步解耦(分类)不一致部分,分类为可能接近决策边界的不可靠数据和更可能出现在高密度区域的引导数据。

      • 方向一致性:将不可靠数据将朝着引导数据的方向进行优化,特征一致性:训练过程中结合特征图并计算特征一致性损失。

  • Method

    • Pipline: DC-Net

    • DC-Net 包含两个解码器 θdA 和 θdB ,其中 θdA 使用双线性插值进行上采样,θdB 使用转置卷积进行上采样。对于标记数据,计算它们之间的损失 Lseg 和 ground-truth,对于一致的部分,计算交叉伪监督损失 L_cp,对于不一致的部分,计算方向一致性损失 L_dc,对于特征图,计算特征一致性损失 L_f。

    • 动态一致性阈值

        等价于下列的公式:

    • 解耦一致性(Decoupled Consistency)

      • 不一致部分

                        

      • 一致部分

        ​​​​​​​        ​​​​​​​        

      • 特征部分

        ​​​​​​​        ​​​​​​​        

      • Total loss

        ​​​​​​​        ​​​​​​​        

    • Experiment

      本文使用 Dice、Jaccard、95% Hausdorff 距离 (95HD) 和平均表面距离 (ASD) 的指标来评估结果。表 1 给出了 ACDC 数据集上包括心肌、左右心室在内的三类分割的平均性能。表 2 显示了 PROMISE12 数据集上的分割结果。从表中可以看出,DC-Net优于其他方法。可视化结果也表明模型的分割结果更接近真实情况,并有效地消除了对 ACDC 的大多数假阳性预测(用底部的黄色框突出显示)。

      • 与其他半监督方法的比较

      • 消融实验

    • Conclusion

        本文提出了一种用于半监督医学图像分割的框架DC-Net。鉴于当前对未标记数据的利用不足的问题,作者旨在充分利用具有各种功能的数据的好处。在此基础上,作者通过动态阈值将预测数据解耦为一致且不一致的部分。此外,不一致的部分进一步解耦为引导数据和不可靠的数据,并通过一种新颖的方向一致性策略进行优化。DC-Net在 ACDC 和 PROMISE12 数据集上都产生了出色的结果。

  • 总结

DC-Net的收获在于作者解决了半监督医学图像分割中无标签数据利用不足的问题。通过设定动态阈值将预测数据解耦为一致和不一致的部分,对于一致部分,采用交叉伪监督的方式优化,对于不一致部分,又进一步解耦为引导数据(高密度区域)和不可靠数据(决策边界),并通过方向一致性策略将 不可靠数据朝着引导数据的方向 优化,这基本充分利用了所有的无标记数据。

本人小白学习,如有不当之处还请大家多多指正!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值