【Deep learning】手写数字识别_深度学习_飞桨_源码

目录

0.代码架构

1.数据集dataloader.py

2.模型model.py

3.训练train.py

4.测试test.py

5.运行结果


0.代码架构

1.数据集dataloader.py

import paddle
import os
import gzip
import json
import random
import numpy as np


# 定义数据集读取器
def load_data(mode='train'):
    # 读取数据文件
    datafile = './data/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    # 读取数据集中的训练集,验证集和测试集
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28
    # 根据输入mode参数决定使用训练集,验证集还是测试
    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]

    # 获得所有图像的数量
    imgs_length = len(imgs)

    # 验证图像数量和标签数量是否一致
    assert len(imgs) == len(labels), \
        "length of train_imgs({}) should be the same as train_labels({})".format(
            len(imgs), len(labels))

    # 给每个数据编号(方便训练打乱数据顺序时索引)
    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        # 训练模式下,打乱训练数据
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        # 按照索引读取数据
        for i in index_list:
            # 读取图像和标签,转换其尺寸和类型
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('int64')
            imgs_list.append(img)
            labels_list.append(label)
            # 如果当前数据缓存达到了batch size,就返回一个批次数据
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                # 清空数据缓存列表
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator

2.模型model.py

# 定义 SimpleNet 网络结构
import os
import random
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F


# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()

        # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
        self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
        # 定义池化层,池化核的大小kernel_size为2,池化步长为2
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
        self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
        # 定义池化层,池化核的大小kernel_size为2,池化步长为2
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        # 定义一层全连接层,输出维度是10
        self.fc = Linear(in_features=980, out_features=10)

    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层激活函数使用softmax
    def forward(self, inputs, label):
        x = self.conv1(inputs)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = paddle.reshape(x, [x.shape[0], 980])
        x = self.fc(x)
        if label is not None:
            acc = paddle.metric.accuracy(input=x, label=label) # 正确率
            return x, acc
        else:
            return x

3.训练train.py

# 加载相关库
import os
import random
import paddle
import numpy as np
from PIL import Image
import gzip
import json

import paddle.nn as nn
import paddle.nn.functional as F

import model
import dataloader

def train(model):
    model.train()
    # 优化器
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())

    EPOCH_NUM = 10
    iter = 0
    iters = []
    losses = []
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            # 准备数据,变得更加简洁
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)

            # 前向计算的过程,同时拿到模型输出值和分类准确率
            predicts, acc = model(images, labels)
            # 计算损失,取一个批次样本损失的平均值
            loss = F.cross_entropy(predicts, labels)
            avg_loss = paddle.mean(loss)

            # 每训练了100批次的数据,打印下当前Loss的情况
            if batch_id % 100 == 0:
                print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(),
                                                                            acc.numpy()))
                iters.append(iter)
                losses.append(avg_loss.numpy())
                iter = iter + 100

            # 后向传播,更新参数的过程
            avg_loss.backward()
            opt.step()
            opt.clear_grad()

    # 保存模型参数
    paddle.save(model.state_dict(), 'mnist.pdparams')

    return iters, losses

# 调用加载数据的函数
train_loader = dataloader.load_data('train')

# 在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = True
paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')

model = model.MNIST()
iters, losses = train(model)

# 引入matplotlib库
import matplotlib.pyplot as plt
#画出训练过程中Loss的变化曲线
plt.figure()
plt.title("train loss", fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("loss", fontsize=14)
plt.plot(iters, losses,color='red',label='train loss')
plt.grid()
plt.show()

4.测试test.py

# 加载相关库
import os
import random
import paddle
import numpy as np
from PIL import Image
import gzip
import json

# 定义模型结构
import paddle.nn.functional as F
from paddle.nn import Conv2D, MaxPool2D, Linear

import dataloader
import model


def evaluation(model):
    print('start evaluation .......')
    # 定义预测过程
    params_file_path = 'mnist.pdparams'
    # 加载模型参数
    param_dict = paddle.load(params_file_path)
    model.load_dict(param_dict)

    model.eval()
    eval_loader = dataloader.load_data('eval')

    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(eval_loader()):
        images, labels = data
        images = paddle.to_tensor(images)
        labels = paddle.to_tensor(labels)
        predicts, acc = model(images, labels)
        loss = F.cross_entropy(input=predicts, label=labels)
        avg_loss = paddle.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))

    # 计算多个batch的平均损失和准确率
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))


model = model.MNIST()
evaluation(model)

5.运行结果

运行train.py:

test.py运行结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值