PyTorch第十讲 CNN基础篇

CNN 基础

请添加图片描述

分为特征提取和分类两个任务
请添加图片描述

一张图片分为R、G、B三通道,每个Patch的通道数与原来一致,但是宽和高与原来不同

卷积操作的滑动模块

单通道输入卷积

请添加图片描述

请添加图片描述

3×3的卷积核,会导致输出比输入少外面一整圈,即长、宽都减少2

多通道输入卷积

请添加图片描述

请添加图片描述

  • 卷积核只要求第一个通道数量要和输入通道数量一致
  • 常见的卷积核宽高为:1×1 3×3 5×5 多为奇数,但也可以为偶数

输出为多通道的卷积

请添加图片描述

每次对输入进行一次卷积核计算,就生成一个通道,所以对输入进行多次卷积核计算就能生成多个通道

其中的卷积核尺寸

请添加图片描述

  • 卷积核维度为4,包括需要输出的m通道,输入的n通道,以及卷积核自身的宽高w、h

代码展示1

import torch

in_channels, out_channels = 5, 10  #输入为5通道,输出为10通道
width, height = 100, 100
kernel_size = 3  #3×3卷积核
batch_size = 1

#返回一个batch_size行in_channels列的张量,其中每个元素又是一个width行height列张量,最小元素的每一行服从均值为0,方差为1的正态分布
input = torch.randn(batch_size,
                    in_channels,
                    width,
                    height)

#二维卷积
conv_layer = torch.nn.Conv2d(in_channels,
                             out_channels,
                             kernel_size=kernel_size)

output = conv_layer(input)

print(input.shape)  #input:1,5,100,100
print(output.shape)  #output:1,10,98,98     因为3×3卷积核,会把长宽各减少2
print(conv_layer.weight.shape)  #卷积核:10,5,3,3
torch.Size([1, 5, 100, 100])
torch.Size([1, 10, 98, 98])
torch.Size([10, 5, 3, 3])

padding

请添加图片描述

  • 含义为需要拓展的原输入圈数,例如padding=1,则拓展一圈,用0填充拓展的空间

代码展示2

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)

conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)

Kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = Kernel.data

output = conv_layer(input)
print(output)
tensor([[[[ 91., 168., 224., 215., 127.],
          [114., 211., 295., 262., 149.],
          [192., 259., 282., 214., 122.],
          [194., 251., 253., 169.,  86.],
          [ 96., 112., 110.,  68.,  31.]]]], grad_fn=<ConvolutionBackward0>)

代码演示3

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)

conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)  #stride=2,表示滑框跳度为2

Kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
conv_layer.weight.data = Kernel.data

output = conv_layer(input)
print(output)
tensor([[[[211., 262.],
          [251., 169.]]]], grad_fn=<ConvolutionBackward0>)

最大池化层

请添加图片描述

  • 取每一个区域中最大的那个数,组成一个新矩阵
import torch

input = [3, 4, 6, 5,
         2, 4, 6, 8,
         1, 6, 7, 8,
         9, 7, 4, 6, ]
input = torch.Tensor(input).view(1, 1, 4, 4)

maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)

output = maxpooling_layer(input)
print(output)
tensor([[[[4., 8.],
          [9., 8.]]]])

CNN 整个流程图

请添加图片描述

请添加图片描述

代码(CPU版)

import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms  #将w(宽)×h(高)×c(channel)转换成c×w×h,即把通道提到最前面

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  #mnist数据集的均值,前人已经算好的,直接用这两个数就行
])

train_dataset = datasets.MNIST(root='./dataset/minist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


#---------------------------------------------------以下为CNN-------------------------------------------------------------------------#
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()
#---------------------------------------------------以上为CNN-------------------------------------------------------------------------#
criterion = torch.nn.CrossEntropyLoss()  #交叉熵
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  #momentum:动量,有助于更快收敛,也有助于跳出局部最优


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        #前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():  #test不需要算梯度
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # 用_表示一个不重要的值,后面也没用到,就只占个位置,dim=1表示横向求max
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.593
[1,   600] loss: 0.192
[1,   900] loss: 0.148
Accuracy on test set: 96 %
[2,   300] loss: 0.115
[2,   600] loss: 0.097
[2,   900] loss: 0.098
Accuracy on test set: 97 %
[3,   300] loss: 0.080
[3,   600] loss: 0.083
[3,   900] loss: 0.070
Accuracy on test set: 97 %
[4,   300] loss: 0.064
[4,   600] loss: 0.069
[4,   900] loss: 0.068
Accuracy on test set: 98 %
[5,   300] loss: 0.059
[5,   600] loss: 0.057
[5,   900] loss: 0.057
Accuracy on test set: 98 %
[6,   300] loss: 0.052
[6,   600] loss: 0.049
[6,   900] loss: 0.055
Accuracy on test set: 98 %
[7,   300] loss: 0.050
[7,   600] loss: 0.047
[7,   900] loss: 0.045
Accuracy on test set: 98 %
[8,   300] loss: 0.049
[8,   600] loss: 0.041
[8,   900] loss: 0.041
Accuracy on test set: 98 %
[9,   300] loss: 0.039
[9,   600] loss: 0.038
[9,   900] loss: 0.045
Accuracy on test set: 98 %
[10,   300] loss: 0.039
[10,   600] loss: 0.039
[10,   900] loss: 0.037
Accuracy on test set: 98 %

代码(调用GPU版)

import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms  #将w(宽)×h(高)×c(channel)转换成c×w×h,即把通道提到最前面
import matplotlib.pyplot as plt
import  sys

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  #mnist数据集的均值,前人已经算好的,直接用这两个数就行
])

train_dataset = datasets.MNIST(root='./dataset/minist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


#---------------------------------------------------以下为CNN-------------------------------------------------------------------------#
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()

#**********************以下为调用GPU改进处*******************************#
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

#**********************以上为调用GPU改进处*******************************#
print(device)
#---------------------------------------------------以上为CNN-------------------------------------------------------------------------#
criterion = torch.nn.CrossEntropyLoss()  #交叉熵
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  #momentum:动量,有助于更快收敛,也有助于跳出局部最优


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data

        #**********************以下为调用GPU改进处*******************************#
        inputs,target=inputs.to(device),target.to(device)
        #**********************以上为调用GPU改进处*******************************#

        optimizer.zero_grad()

        #前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():  #test不需要算梯度
        for data in test_loader:
            images, labels = data

            #**********************以下为调用GPU改进处*******************************#
            images,labels=images.to(device),labels.to(device)
            #**********************以上为调用GPU改进处*******************************#

            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # 用_表示一个不重要的值,后面也没用到,就只占个位置,dim=1表示横向求max
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total,correct,total))
    return correct / total


epoch_list=[]
accu_list=[]

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        accu=test()
        epoch_list.append(epoch)
        accu_list.append(accu)

    plt.plot(epoch_list,accu_list,'o-')
    plt.xticks(range(11))
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.grid(alpha=0.4)


    plt.show()
cuda:0
[1,   300] loss: 0.630
[1,   600] loss: 0.207
[1,   900] loss: 0.152
Accuracy on test set: 96 % [9673/10000]
[2,   300] loss: 0.115
[2,   600] loss: 0.108
[2,   900] loss: 0.103
Accuracy on test set: 97 % [9749/10000]
[3,   300] loss: 0.088
[3,   600] loss: 0.082
[3,   900] loss: 0.075
Accuracy on test set: 98 % [9811/10000]
[4,   300] loss: 0.067
[4,   600] loss: 0.065
[4,   900] loss: 0.067
Accuracy on test set: 98 % [9812/10000]
[5,   300] loss: 0.061
[5,   600] loss: 0.060
[5,   900] loss: 0.055
Accuracy on test set: 98 % [9814/10000]
[6,   300] loss: 0.053
[6,   600] loss: 0.053
[6,   900] loss: 0.049
Accuracy on test set: 98 % [9866/10000]
[7,   300] loss: 0.044
[7,   600] loss: 0.049
[7,   900] loss: 0.050
Accuracy on test set: 98 % [9868/10000]
[8,   300] loss: 0.040
[8,   600] loss: 0.048
[8,   900] loss: 0.044
Accuracy on test set: 98 % [9882/10000]
[9,   300] loss: 0.038
[9,   600] loss: 0.042
[9,   900] loss: 0.043
Accuracy on test set: 98 % [9840/10000]
[10,   300] loss: 0.040
[10,   600] loss: 0.040
[10,   900] loss: 0.034
Accuracy on test set: 98 % [9883/10000]

请添加图片描述

课后作业

尝试一个更加复杂的CNN网络

  • 3*二维卷积
  • 3*ReLU
  • 3*MaxPooling
  • 2*Linear
  • 尝试不同的参数,比较他们的性能

作业代码中参数的确定

请添加图片描述

代码及运行结果

import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms  #将w(宽)×h(高)×c(channel)转换成c×w×h,即把通道提到最前面
import matplotlib.pyplot as plt

batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))  #mnist数据集的均值,前人已经算好的,直接用这两个数就行
])

train_dataset = datasets.MNIST(root='./dataset/minist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


#---------------------------------------------------以下为CNN-------------------------------------------------------------------------#
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        #3*二维卷积
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)  #1*28*28
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)  #20*8*8
        self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)  #30*2*2

        self.pooling = torch.nn.MaxPool2d(2)

        self.fc1 = torch.nn.Linear(30, 20)
        self.fc2 = torch.nn.Linear(20, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x=F.relu(self.pooling(self.conv3(x)))
        x = x.view(batch_size, -1)
        x = self.fc1(x)
        xx=self.fc2(x)
        return x


model = Net()

#**********************以下为调用GPU改进处*******************************#
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

#**********************以上为调用GPU改进处*******************************#
print(device)
#---------------------------------------------------以上为CNN-------------------------------------------------------------------------#
criterion = torch.nn.CrossEntropyLoss()  #交叉熵
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)  #momentum:动量,有助于更快收敛,也有助于跳出局部最优


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data

        #**********************以下为调用GPU改进处*******************************#
        inputs, target = inputs.to(device), target.to(device)
        #**********************以上为调用GPU改进处*******************************#

        optimizer.zero_grad()

        #前馈+反馈+更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():  #test不需要算梯度
        for data in test_loader:
            images, labels = data

            #**********************以下为调用GPU改进处*******************************#
            images, labels = images.to(device), labels.to(device)
            #**********************以上为调用GPU改进处*******************************#

            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)  # 用_表示一个不重要的值,后面也没用到,就只占个位置,dim=1表示横向求max
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
    return correct / total


epoch_list = []
accu_list = []

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        accu = test()
        epoch_list.append(epoch)
        accu_list.append(accu)

    plt.plot(epoch_list, accu_list, 'o-')
    plt.xticks(range(10))
    plt.xlabel('epoch')
    plt.ylabel('accuracy')
    plt.grid(alpha=0.4)

    plt.show()
cuda:0
[1,   300] loss: 1.177
[1,   600] loss: 0.320
[1,   900] loss: 0.225
Accuracy on test set: 92 % [9242/10000]
[2,   300] loss: 0.160
[2,   600] loss: 0.141
[2,   900] loss: 0.124
Accuracy on test set: 96 % [9618/10000]
[3,   300] loss: 0.106
[3,   600] loss: 0.091
[3,   900] loss: 0.090
Accuracy on test set: 97 % [9760/10000]
[4,   300] loss: 0.079
[4,   600] loss: 0.077
[4,   900] loss: 0.072
Accuracy on test set: 97 % [9786/10000]
[5,   300] loss: 0.065
[5,   600] loss: 0.062
[5,   900] loss: 0.063
Accuracy on test set: 97 % [9777/10000]
[6,   300] loss: 0.056
[6,   600] loss: 0.055
[6,   900] loss: 0.054
Accuracy on test set: 98 % [9812/10000]
[7,   300] loss: 0.053
[7,   600] loss: 0.047
[7,   900] loss: 0.045
Accuracy on test set: 98 % [9849/10000]
[8,   300] loss: 0.040
[8,   600] loss: 0.043
[8,   900] loss: 0.044
Accuracy on test set: 98 % [9857/10000]
[9,   300] loss: 0.039
[9,   600] loss: 0.042
[9,   900] loss: 0.037
Accuracy on test set: 98 % [9863/10000]
[10,   300] loss: 0.034
[10,   600] loss: 0.037
[10,   900] loss: 0.035
Accuracy on test set: 98 % [9869/10000]

请添加图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值