二叉搜索树原理及底层实现

二叉搜索树BST

概念

二叉搜索树又称二叉排序树,它可以是一棵空树,或者是具有以下性质的二叉树:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;它的左右子树也分别为二叉搜索树。

即当我们按中序来遍历输出这棵树的节点时,是有序的,按从小到大的顺序。

实现的细节

搜索key的过程Find/FindR

a.从根开始查找,val比根节点值大则往右边走查找,比根节点值小则往左边走查找;
b.最多查找高度次,走到到空,还没找到,说明这个值不存在。

//普通版本--用循环解决
bool Find(const K& key)
{
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            cur = cur->_left;
        }
        else
        {
            return true;
        }
    }
    return false;
}

//用递归来解决
public:
bool FindR(const K& key)
{
    return _FindR(_root, key);
}
private:
bool _FindR(Node* root, const K& key)
{
    if (root == nullptr)
        return false;

    if (key > root->_key)
        return _FindR(root->_right, key);
    else if (key < root->_key)
        return _FindR(root->_left, key);
    else
        return true;
}

插入key的过程Insert/InsertR

需要考虑以下场景:

a.树为空,则直接新增节点new,赋值给root指针;
b.树不为空,按二叉搜索树性质查找插入位置,即与根节点比较,比根节点的值小,往左查找;比根节点的值大,往右查找,找到该位置后插入新节点。这个过程需要用到2个指针,一个为判断当前值与key孰大孰小的cur指针,一个是保存cur的父节点的parent指针,最终要把key值节点插入在parent的左/右节点。【注意:此处的二叉搜索树无相同值】

bool Insert(const K& key)
{
    //如果根节点为空,直接插入这个值
    if (_root == nullptr)
    {
        _root = new Node(key);
        return true;
    }

    Node* cur = _root;
    Node* parent = nullptr;
    while (cur)
    {
        if (cur->_key == key)
        {
            //如果二叉搜索树中已经有一样的值了,插入失败
            return false;
        }
        else if (key > cur->_key)
        {
            parent = cur;
            //与根节点比较,比根节点的值小,往左走;比根节点的值大,往右走
            cur = cur->_right;
        }
        else
        {
            parent = cur;
            cur = cur->_left;
        }
    }
    cur = new Node(key);
    //与根节点比较,比根节点的值大,就链接在右边
    if (key > parent->_key)
    {
        parent->_right = cur;
    }
    else
    {
        parent->_left = cur;
    }
    return true;
}

public:
	bool InsertR(const K& key)
	{
		return _InsertR(_root, key);
	}
private:
bool _InsertR(Node*& root, const K& key)
	{
		//方式1 bool _InsertR(Node* root, const K& key)
		//if (key > root->_key)
		//{
		//	if (root->_right == nullptr)
		//	{
		//		root->_right = new Node(key);
		//		return true;
		//	}
		//	else
		//		return _InsertR(root->_right, key);
		//}
		//else if (key < root->_key)
		//{
		//	if (root->_left == nullptr)
		//	{
		//		root->_left = new Node(key);
		//		return true;
		//	}
		//	else
		//		return _InsertR(root->_left, key);
		//}
		//else
		//	return false;
		
		//方式2 bool _InsertR(Node*& root, const K& key)
		if (root == nullptr)
		{
			root = new Node(key);
			return true;
		}

		if (key > root->_key)
			return _InsertR(root->_right, key);
		else if (key < root->_key)
			return _InsertR(root->_left, key);
		else
			return false;
	}

这里的二叉搜索树无法保证左右平衡。

删除的过程Erase/EraseR

首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:

  1. 要删除的结点无孩子结点–直接删除,其父节点原来指向它的变成指向空
  2. 要删除的结点只有左孩子结点–托孤,让该节点的父节点直接指向该节点的孩子节点
  3. 要删除的结点只有右孩子结点–托孤,让该节点的父节点直接指向该节点的孩子节点
  4. 要删除的结点有左、右孩子结点–替换,找左子树的最大和右子树的最小

看起来待删除节点的处理方式有4种情况,实际上情况1可以与情况2或者3合并起来,因此真正的删除过程如下:

  1. 删除该结点且使被删除节点的父结点指向被删除节点的左孩子结点–直接删除
  2. 删除该结点且使被删除节点的父结点指向被删除结点的右孩子结点–直接删除
  3. 在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题–替换法删除
//普通版本
bool Erase(const K& key)
{
    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        //与根节点比较,比根节点的值大,往右走;比根节点的值小,往左走
        if (key > cur->_key)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (key < cur->_key)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            //能走到这,就说明找到了要删除的这个节点,要删除的节点为cur
            //情况1:左子节点为空,右子节点不为空
            if (cur->_left == nullptr)
            {
                //需要特殊处理根节点,因为根节点无父节点
                if (cur == _root)
                {
                    _root = cur->_right;
                }
                else
                {
                    //cur为parent的左子节点,cur的子节点就得继承parent的左子节点
                    if (parent->_left == cur)
                    {
                        parent->_left = cur->_right;
                    }
                    //cur为parent的右子节点,cur的子节点就得继承parent的右子节点
                    else
                    {
                        parent->_right = cur->_right;
                    }
                }
                delete cur;
            }
            //情况2:左子节点不为空,右子节点为空
            else if (cur->_right == nullptr)
            {
                //需要特殊处理根节点,因为根节点无父节点
                if (cur == _root)
                {
                    _root = cur->_left;
                }
                else
                {
                    //cur为parent的左子节点,cur的子节点就得继承parent的左子节点
                    if (parent->_left == cur)
                    {
                        parent->_left = cur->_left;
                    }
                    //cur为parent的右子节点,cur的子节点就得继承parent的右子节点
                    else
                    {
                        parent->_right = cur->_left;
                    }
                }
                delete cur;
            }
            //情况3:左右子节点均不为空
            else
            {
                //在cur的右子树中寻找中序的第一个结点
                Node* parent = cur;
                Node* minRight = cur->_right;//此处前置条件是cur的左右子树均不为空
                while (minRight->_left)
                {
                    parent = minRight;
                    minRight = minRight->_left;
                }
                //交换cur和minRight的值
                cur->_key = minRight->_key;
                //删除minRight
                if (minRight == parent->_left)
                    parent->_left = minRight->_right;
                else
                    parent->_right = minRight->_right;
                delete minRight;
            }
            return true;
        }
    }
    //走到这,说明没找到
    return false;
}

//递归版本
public:
	bool EraseR(const K& key)
	{
		return _EraseR(_root, key);
	}
private:
	bool _EraseR(Node*& root, const K& key)
	{
		if (root == nullptr)
			return false;

		if (key > root->_key)
		{
			return _EraseR(root->_right, key);
		}
		else if (key < root->_key)
		{
			return _EraseR(root->_left, key);
		}
		else
		{
			Node* del = root;
			//相等就开始删除
			if (root->_left == nullptr)
			{
				root = root->_right;
			}
			//情况2:左子节点不为空,右子节点为空
			else if (root->_right == nullptr)
			{				
				root = root->_left;
			}
			//情况3:左右子节点均不为空
			else
			{
				Node* minRight = root->_right;
				while (minRight->left)
				{
					minRight = minRight->left;
				}
				swap(root->_key, minRight->_key);

				// 转换成在子树中去删除节点
				return _EraseR(root->_right, key);
			}
			delete del;

			return true; 
		}
	}

中序遍历InOrder

在不暴露根节点_root的情况下(比如写一个函数getroot()等让用户获取),套一层函数接口就直接在类内使用这个_root,实现中序遍历

void InOrder()
{
    _InOrder(_root);
    std::cout << std::endl;
}
private:
void _InOrder(Node* root)
{
    //中序:左根右
    if (root == nullptr) return;

    _InOrder(root->_left);
    std::cout << root->_key << " ";
    _InOrder(root->_right);
}

注意:二叉搜素树不支持改,对于二叉搜索树而言,仅仅修改对应节点的值,极有可能破坏原结构,所以改=删除+插入

构造函数、拷贝构造函数、赋值构造函数、析构函数

public:
	BSTree()
		:_root(nullptr)
	{}

	BSTree(const BSTree<K>& t)
	{
		_root = Copy(t._root);
	}
	
	BSTree<K>& operator=(BSTree<K> t)
	{
		swap(_root, t._root);
		return *this;
	}

	~BSTree()
	{
		Destory(_root);
		_root = nullptr;
	}
private:
	void Destory(Node* root)
	{
		if (root == nullptr)
			return;
		//按后序来删除
		Destory(root->_left);
		Destory(root->_right);
		delete root;
	}

	Node* Copy(Node* root)
	{
		if (root == nullptr)
			return nullptr;
		//前序遍历,再递归拷贝
		Node* newnode = new Node(root->_key);
		newnode->_left = Copy(root->_left);
		newnode->_right = Copy(root->_right);
		return newnode;
	}

应用场景

K模型–判断某个key在不在的场景;KV模型–通过key查找或修改value

  1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。

比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。其他场景:检查单词拼写是否正确/车库出入系统/宿舍楼门禁系统

  1. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:

比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。其他场景:英汉互译/学号学生对应

性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

  • 最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为: l o g 2 N log_2 N log2N
  • 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为: N 2 \frac{N}{2} 2N

但是如果退化成单支树,二叉搜索树的性能就很差,后续引入红黑树和AVL树来解决。

  • 27
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 21
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值