论文信息
题目:
Improving RGB-D SLAM in dynamic environments:A motion removal approach
动态环境下改进RGB-D SLAM的运动去除方法
论文地址:
https://www.ram-lab.com/papers/2018/ras_2018_sun2.pdf
发表期刊:
Robotics and Autonomous Systems Volume 89, March 2017, Pages 110-122
标签
动态物体跟踪、去除
摘要
现有的RGB-D SLAM方法大多假设SLAM过程中遍历的环境是静态的。这是因为动态环境中的移动物体会严重降低SLAM的性能。静态世界的假设限制了RGB-D SLAM在动态环境中的应用。为了解决这个问题,提出了一种新的基于RGB-D数据的运动去除方法,并将其集成到RGB-D SLAM的前端。运动去除方法作为预处理阶段,过滤掉与运动对象相关的数据。
内容简介
本文的主要工作总结如下:•
提出了一种新的运动去除方法。该方法是在线的,只需要一个RGB-D相机作为传感器。在任何阶段都不需要人为干预。
采用矢量量化深度图像进行运动分割,经验证明了其优势。
使用公开的RGB-D数据集进行实验。实验结果证明了该方法在各种动态环境下改善RGB-D SLAM的有效性。
我们的方法的思想很简单。它包括三个步骤。第一步是基于自运动补偿图像差值的运动目标运动粗检测。第二步是利用粒子滤波进行运动跟踪,增强运动检测。第三步是对矢量量化深度图像应用最大后验估计(Maximum-a-posterior, MAP)来精确确定前景。需要注意的是,我们在方法中跟踪的是运动块,而不是移动物体。与大多数跟踪技术([34])不同的是,该方法对运动目标建立模型,并对建立的模型进行跟踪。
我们使用RGB图像进行运动检测和跟踪。利用两幅连续的RGB图像进行基于ransac的单应性估计,计算相机的ego运动。通过对当前RGB帧与自我运动补偿后的上一帧进行相减,粗略地检测出运动物体的运动。在检测阶段,输出差分图像。差分图像中的像素值作为粒子滤波的测量信息。在分割阶段,由粒子滤波计算得到的后验置信作为MAP估计的似然值。采用矢量量化聚类深度图像进行运动分割。通过MAP计算出具有最高前景概率的簇被视为前景。
评价
提出了一种基于RGB-D数据的运动去除方法。本文的动机是使用提出的运动去除方法来改进动态环境下的RGB-D SLAM。该方法分为3个阶段。在一个在线框架中,将这三个阶段紧密耦合。在实验中,将该方法应用于DVO SLAM算法的前端。该方法作为预处理阶段,过滤与移动对象相关的数据。利用公开的TUM RGB-D数据集进行定量评价。实验结果表明,该方法能够有效提高RGB-D SLAM在各种具有挑战性的场景中的性能。然而,该方法仍然存在一些局限性。例如,当相邻帧间视差较大时,单应性矩阵估计会出现降质。当运动物体静止不动时,跟踪就会失败。由于我们使用MAP来确定前景,因此只能分割出一个运动簇。这限制了我们对于有许多移动对象的场景的方法。为了克服这些限制,我们希望在未来增强我们的方法与学习能力。运动外观将在飞行中学习。此外,我们希望将该方法扩展到一个完整的RGB-D SLAM系统,该系统可以自适应地在静态和动态环境中工作