论文信息
题目:
Dynamic SLAM Algorithm Fusing Semantic Information and Geometric Constraints
融合语义信息与几何约束的动态SLAM算法
论文地址:
https://ieeexplore.ieee.org/abstract/document/9907568
发表期刊:
2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
标签
语义+几何约束、动态slam
摘要
提出一种适应动态场景的有效VSLAM算法。首先,利用YOLOv5s目标检测算法对相机拍摄的图片进行语义信息提取,根据语义信息将图像场景划分为静态区域和潜在动态区域;然后,算法在计算初始位姿时仅使用静态环境中的特征点,再结合极线约束和加权动态概率剔除环境中的动态点;最后,通过计算环境中所有静态点来优化初始位姿。
内容简介
主要以动态环境为背景,提出一种融合语义信息和动态概率约束的SLAM算法。主要内容如下:
1)选择较为轻量级的YOLOv5s目标检测网络作为独立线程,结合ORB-SLAM2框架,实现可实时运行的动态SLAM系统。
2)提出一种基于语义信息和加权动态概率的算法,消除动态对象上的异常特征点,提高定位精度和系统鲁棒性算法在公开的TUM数据集上评估算法的有效性。
评价
针对传统SLAM算法在动态环境下难以定位和建图的问题,提出一种结合语义信息和几何约束的动态SLAM算法。利用静态区域的特征点计算初始位姿,然后确定潜在动态区域的特征点,在计算动态概率时引入前一帧特征点的动态概率。最后,利用TUM数据集计算系统的定位精度,对算法进行验证。实验结果表明,该算法在动态环境下的定位精度和鲁棒性均有明显提高。
阅读总结
该文章改进ORB-SLAM2,在其基础上采用yolov5网络进行语义分割,分割出动态区域以及静态区域,然后利用几何约束剔除真正动态的区域,避免过度的剔除问题,该方法在我之前阅读文章中也有类似缺陷,直接的剔除然后再提取特征点必然会导致特征点不足的问题(特别是动态区域过大时,有些动态目标暂时为静态点)。又一个创新点被发表,不过我感觉该文章写得不够详细,后面会结合该思路进一步创新。