50系显卡Windows配置Anaconda中的CUDA及Pytorch

安装日期:2025年04月23日 (安装时50系显卡只支持Cuda12.8及Torch2.8)

1. 在Anaconda中创建相关虚拟环境

注:Torch2.8需要python版本大于等于3.9

2. Cuda安装

conda install cuda-toolkit=12.8 cuda-nvcc=12.8 cuda-compiler=12.8 -c nvidia

3. Cudnn安装

conda install cudnn -c nvidia

4. Pytorch安装

由于目前50系刚出不久,Pytorch只适配了Preview(Nightly)版本。常规的Stable版不能用。装老版本Pytorch会提示如下:

参考:

英伟达新一代GPU架构(50系列显卡)PyTorch兼容性解决方案_50系支持cudatool-CSDN博客

GTX 50系显卡cuda、pytorch环境配置_cuda12.8对应的pytorch-CSDN博客 

但是用上图的pip指令直接安装,会出现哈希值校验失败问题。
ERROR: THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE. If you have updated the package versions, please update the hashes. Otherwise, examine the package contents carefully; someone may have tampered with them. torchvision from https://download.pytorch.org/whl/nightly/cu128/torchvision-0.22.0.dev20250422%2Bcu128-cp310-cp310-win_amd64.whl: Expected sha256 8ee0514d2cddf2b615ce0a85415d9c98f99e98cbd185c22d2a23e2d849dce06e Got 0bf6ad5fc142196eb0559a44a47b9787e97a7777df9140f74474f262aa17fe9f

所以改为从官网下载whl文件然后手动安装的方式。需要下载torch、torchvision、torchaudio。

Cuda12.8适配的torch先行版本为Torch2.8(2025.04.23)

Pytorch官网:

Start Locally | PyTorch

对应版本下载网址:

https://download.pytorch.org/whl/nightly/cu128

4.1. torch安装

将ananconda切换到对应文件下载地址

pip install -i https://mirrors.cloud.tencent.com/pypi/simple torch-2.8.0.dev20250421+cu128-cp310-cp310-win_amd64.whl

(安装本地whl文件的时候,从给定的网址寻找相关依赖)

4.2. torchvision安装

pip install -i https://mirrors.cloud.tencent.com/pypi/simple torch-2.8.0.dev20250422+cu128-cp310-cp310-win_amd64.whl

4.3. torchaudio安装

pip install -i https://mirrors.cloud.tencent.com/pypi/simple torchvision-0.22.0.dev20250422+cu128-cp310-cp310-win_amd64.whl

其中,torchvision和torchaudio的版本需要比torch的版本晚。我这里安装的是晚一天的。

否则会提示:

INFO: pip is looking at multiple versions of torchvision to determine which version is compatible with other requirements. This could take a while.

ERROR: Could not find a version that satisfies the requirement torch==2.8.0.dev20250410+cu128 (from torchvision) (from versions: 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.1.2, 2.2.0, 2.2.1, 2.2.2, 2.3.0, 2.3.1, 2.4.0, 2.4.1, 2.5.0, 2.5.1, 2.6.0)

ERROR: No matching distribution found for torch==2.8.0.dev20250410+cu128

5. 验证测试

在安装完torch、torchaudio、torchvision之后

  1. 输入python
  2. 输入import torch
  3. 输入torch.cuda.is_available()
  4. 如果显示为True 证明安装成功

<think>好的,用户现在需要在Anaconda环境中配置PyTorch。我需要一步步引导他们完成这个过程,同时确保信息准确且容易理解。 首先,用户可能对AnacondaPyTorch不太熟悉,可能需要先解释两者的基本概念。不过根据问题,用户可能已经知道Anaconda是什么,所以重点放在配置步骤上。 接下来,用户可能使用不同的操作统,比如Windows、macOS或Linux。不同统下的安装命令可能不同,特别是CUDA版本的选择。需要分情况说明。 然后,PyTorch的安装命令需要从官网获取,用户可能不知道在哪里找到正确的命令。应该引导他们访问PyTorch官网,选择适合自己环境的选项,然后生成安装命令。这样可以避免用户手动输入出错。 另外,用户可能有GPU或者只有CPU,这会影响是否需要安装CUDA版本的PyTorch。需要提醒他们检查自己的显卡是否支持CUDA,并安装对应的驱动。如果用户没有GPU,应该推荐安装CPU版本,这样更简单。 安装完成后,验证步骤也很重要。用户需要知道如何检查PyTorch是否正确安装,包括版本号和CUDA是否可用。提供简单的测试代码可以帮助他们确认安装成功。 可能遇到的常见问题包括网络问题导致下载慢,这时候建议更换conda源或者使用pip的镜像源。还有可能用户安装了错误的CUDA版本,导致PyTorch无法使用GPU,需要提醒他们根据显卡驱动版本选择合适的PyTorch版本。 此外,用户可能会混淆conda和pip的安装方式。虽然推荐使用conda来管理依赖,但有时pip也是可行的,特别是当conda源中没有最新版本时。需要说明两者的区别,并建议优先使用conda。 最后,确保整个步骤结构清晰,分点说明,方便用户一步步操作。避免使用复杂术语,保持语言简洁明了。</think>以下是在Anaconda环境中配置PyTorch的完整指南,分步骤说明并提供多平台支持: --- ### **Step 1:创建独立虚拟环境(推荐)** ```bash # 创建名为`pytorch_env`的Python 3.9环境 conda create -n pytorch_env python=3.9 conda activate pytorch_env ``` --- ### **Step 2:选择安装命令(关键步骤)** 根据**操作统**和**硬件配置**选择对应命令: #### **Windows/Linux 用户(有NVIDIA GPU)** 1. 检查CUDA版本: ```bash nvidia-smi # 查看右上角显示的CUDA版本(如12.4) ``` 2. 根据CUDA版本选择命令(以CUDA 12.1为例): ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` #### **Mac用户(仅CPU/M列芯片)** ```bash conda install pytorch torchvision torchaudio -c pytorch ``` #### **无GPU的纯CPU安装** ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` --- ### **Step 3:验证安装** 在Python中运行以下测试代码: ```python import torch print(f"PyTorch版本: {torch.__version__}") # 应输出如2.2.1 print(f"CUDA是否可用: {torch.cuda.is_available()}") # 有GPU应显示True print(f"GPU数量: {torch.cuda.device_count()}") # 显示可用GPU数量 ``` --- ### **常见问题解决** #### **Q1:安装速度慢** - 方案1:更换国内镜像源 ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` - 方案2:使用pip安装(需先安装conda的pip) ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` #### **Q2:CUDA不可用** - 检查驱动兼容性:通过[NVIDIA驱动表](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)确认CUDA版本与驱动匹配 - 重装对应版本: ```bash conda uninstall pytorch conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` --- ### **环境管理命令** | 操作 | 命令 | |-------|-------| | 查看所有环境 | `conda env list` | | 删除环境 | `conda env remove -n pytorch_env` | | 导出环境配置 | `conda env export > environment.yml` | | 复现环境 | `conda env create -f environment.yml` | --- ### **版本选择建议** | 硬件配置 | 推荐版本组合 | 说明 | |---------|-------------|------| | RTX 40列 | PyTorch 2.0+ / CUDA 12.1 | 支持最新特性 | | RTX 30列 | PyTorch 1.12+ / CUDA 11.8 | 稳定兼容 | | Mac M1/M2 | PyTorch 2.0+ | 启用Metal加速 | 通过[PyTorch官网验证页面](https://pytorch.org/get-started/locally/)可获取最新安装命令。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值