VGG16、VGG19网络架构及模型训练 tricks :训练技巧、测试技巧

本文总结了VGG16和VGG19网络的训练技巧,包括尺度扰动(Scale jittering)和预训练模型初始化,以及测试技巧如多尺度评估。尺度扰动通过改变图片尺寸和颜色增强数据,预训练模型初始化可以提升深度学习性能。在测试阶段,采用不同尺度的图片预测并取平均值,以提高准确性。实验表明,尺度扰动和多尺度测试策略能有效提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一篇文章的基础之上,总结一下论文中提出的训练技巧和测试技巧。上一篇文章参考:VGG论文笔记--VGGNet网络架构演变[VGG16,VGG19]

一、训练技巧

技巧1:Scale jittering 尺度扰动

 数据增强

  • 方法一:针对位置

训练阶段: ① 按比例缩放图片至最小边为S

                   ② 随机位置裁剪出224*224区域

                   ③ 随机进行水平翻转

解释:例如一张图片尺寸为512*1024,设置S=256,那么该图片的最短边512就要变成256,1024边自动等比例进行缩放。代码实现时,注意是resize((256)),而不是resize(256,256) 。缩放完成后,随机位置裁剪出224*224的区域,最后进行随机水平

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农男孩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值