近期图像生成与编辑扩散模型综述

随着公众对人工图像生成模型的兴趣日益增加,计算机视觉领域的研究人员开发了多种深度学习实现的模型,如Stable Diffusion、Dall.E、Imagen等。这些模型被用于各种目的,像生成个人头像、网站模板以及辅助平面设计等。如今,大多数用于图像生成的模型都是扩散模型。简单来说,扩散模型是一种概率模型,它接收一个包含100%高斯噪声的矩阵,然后逐步从这个矩阵中去除噪声,最终生成与训练数据匹配的合理图像。

文本反转(Textual Inversion)

该项目的作者想要创建一个能学习新主题或对象(在该模型中称为“概念”)的图像生成模型,以影响图像生成过程。其核心思想是,如果模型能轻松快速地掌握这些新概念(无需数天的模型训练),用户就能基于这些概念轻松生成新图像,例如“概念”骑自行车的图像。模型能够理解“概念”是什么,并生成语义上与提示相匹配的图像。

具体实现方式是,给定一组图像和一个文本提示(即字符串),首先将字符串转换为一组标记(数值),然后每个标记被其自身的嵌入向量替换,再输入到预训练模型中。作者的目标是“找到代表新的、特定概念的新嵌入向量”。

应用场景
  • 风格迁移&#x
基于扩散模型的图像风格迁移是一种常见的图像处理技术,它可以将一张图像的风格转移到另一张图像上,从而实现图像的艺术化处理。下面是基于扩散模型的图像风格迁移的综述: 1. 扩散模型简介:扩散模型是一种基于偏微分方程的图像处理方法,它通过模拟图像中像素间的扩散过程来实现图像平滑和去噪。在图像风格迁移中,扩散模型被用来描述风格特征在图像中的传播过程。 2. 风格迁移算法:基于扩散模型的图像风格迁移算法通常包括以下步骤: - 风格特征提取:通过预训练的卷积神经网络(如VGG网络)提取源图像和目标图像的风格特征。 - 风格传播:使用扩散模型将源图像的风格特征传播到目标图像上,得到中间结果。 - 内容保持:保持目标图像的内容特征不变,以保证迁移后的图像仍然具有目标图像的内容。 - 优化求解:通过迭代优化的方式,调整中间结果,使其更接近目标图像的风格特征。 3. 算法改进应用:基于扩散模型的图像风格迁移算法在实践中不断改进和发展,以提高迁移效果和运算效率。一些改进的方法包括: - 快速风格迁移:通过预训练的生成对抗网络(GAN)来加速风格迁移过程。 - 多尺度处理:在不同尺度上进行风格迁移,以保留更多的细节信息。 - 风格融合:将多个风格进行融合,生成更加多样化的迁移结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

t0_54coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值