山东大学软件学院创新实训周报6(5.13~5.19)

引言

在本周的工作中,我们的大模型组着力于使用ChatGLM结合LangChain知识库的形式扩充模型。此项工作旨在通过检索增强生成(RAG,Retrieval-Augmented Generation)技术,将语言模型与知识库无缝集成,提升问答系统的准确性和响应能力。通过这一过程,我们希望构建一个高效、智能的问答系统,能够在大规模数据环境下提供精确且快速的答案。

大模型组工作详情

任务背景和目的

在现代智能问答系统中,单纯依赖语言模型(如ChatGLM)可能会面临知识更新不及时和准确率不足的问题。为了解决这一问题,我们引入LangChain知识库,通过将其与ChatGLM模型集成,实现知识的实时更新和精确检索,从而提高系统的回答准确性和用户满意度。

LangChain工具介绍

LangChain是一个专为构建智能问答系统而设计的工具,提供了灵活的接口和强大的检索能力。通过LangChain,可以将多种知识库(如文本数据库、知识图谱)与语言模型集成,实现信息的高效检索和自然语言生成。

数据接口设计和实现

API设计

为了实现ChatGLM和LangChain知识库之间的数据交互,我们设计了RESTful API接口。API支持多种查询类型,如实体查询、关系查询和文本检索,确保数据能够在不同模块间顺畅流通。

以下是API设计的示例:

from flask import Flask, request, jsonify
​
app = Flask(__name__)
​
@app.route('/query', methods=['POST'])
def query():
    data = request.json
    query_type = data.get('type')
    query_text = data.get('query')
​
    if query_type == 'entity':
        response = get_entity_info(query_text)
    elif query_type == 'relation':
        response = get_relation_info(query_text)
    elif query_type == 'text':
        response = get_text_info(query_text)
    else:
        response = {'error': 'Invalid query type'}
​
    return jsonify(response)
​
def get_entity_info(query):
    # 模拟从LangChain知识库中获取实体信息
    return {'entity': query, 'info': 'Sample entity information'}
​
def get_relation_info(query):
    # 模拟从LangChain知识库中获取关系信息
    return {'entity': query, 'relation': 'Sample relation information'}
​
def get_text_info(query):
    # 模拟从LangChain知识库中获取文本信息
    return {'query': query, 'text': 'Sample text information'}
​
if __name__ == '__main__':
    app.run(debug=True)

数据格式转换和传输

在接口设计中,我们采用JSON格式进行数据传输,确保数据格式统一且易于解析。数据格式转换包括将知识库中的结构化数据转换为语言模型可以处理的格式,如文本或嵌入向量。

系统集成

ChatGLM和知识库的融合方法

为了实现ChatGLM与知识库的无缝融合,我们采用了RAG技术。该技术结合了信息检索和生成模型,通过先检索相关知识,再生成回答的方式,提升回答的准确性和上下文理解能力。

以下是融合方法的示例代码:

from transformers import AutoModel, AutoTokenizer
from langchain import LangChain
​
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b")
model = AutoModel.from_pretrained("THUDM/chatglm3-6b")
​
def retrieve_and_generate(question):
    # 检索相关知识
    knowledge = LangChain.retrieve(question)
    # 将知识传递给语言模型生成回答
    inputs = tokenizer(question + knowledge, return_tensors="pt")
    outputs = model.generate(**inputs)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return answer
​
question = "李白的代表作品有哪些?"
answer = retrieve_and_generate(question)
print(answer)
初步测试和结果分析

测试方法和测试数据集选择

为了评估系统性能,我们选择了一个包含多种问题类型的测试数据集,包括事实性问题、推理性问题和开放性问题。通过对这些问题进行测试,我们可以全面评估系统在不同场景下的表现。

系统性能评估

在测试中,我们重点关注以下几个指标:

  1. 准确率:衡量系统返回正确答案的比例。

  2. 召回率:衡量系统从所有相关答案中检索出正确答案的能力。

  3. 响应时间:系统从接收到问题到返回答案所用的时间。

初步测试结果显示,集成知识库后的系统在准确率和召回率上有显著提升,响应时间也保持在可接受范围内。

数据同步中的问题

在数据同步过程中,我们遇到了数据实时更新和一致性的问题。为了解决这些问题,我们采用了事件驱动的同步机制,通过消息队列实现数据的实时更新和传输,确保知识库中的数据始终是最新的。

接口设计中的困难和解决方法

在设计API接口时,我们面临数据格式转换和错误处理的挑战。通过引入标准化的数据格式(如JSON)和健全的错误处理机制,我们成功解决了这些问题,确保数据在不同模块间的顺畅流通。

ChatGLM与知识库的集成难点

在实现ChatGLM与知识库的集成时,我们遇到了以下难点:

  1. 数据兼容性:知识库中的数据格式多样,需要进行统一转换。

  2. 模型性能优化:为了保证系统的实时响应,需要对语言模型进行性能优化,如使用量化技术减少内存占用,提高推理速度。

通过以上方法和技术手段,我们成功克服了这些难点,实现了ChatGLM与知识库的无缝集成。

团队协作与沟通

团队成员间的分工与合作

本周,我们的大模型组成员之间进行了密切的协作。具体分工如下:

  • 数据接口设计与实现:负责API接口的设计与实现,确保数据在系统内的流通顺畅。

  • 系统集成与优化:负责将ChatGLM与LangChain知识库进行集成,并优化系统性能。

  • 测试与评估:负责构建测试数据集,进行系统性能测试与评估。

通过明确的分工和有效的沟通,我们提高了工作效率,并确保了任务的顺利完成。

与VR组的技术对接与讨论

除了大模型组内部的合作外,我们还与VR组进行了技术对接和讨论。通过定期的沟通会议,我们了解了VR组的进展和需求,并就如何将知识图谱与VR展示结合进行了深入探讨。我们讨论了如何利用知识图谱为VR场景提供背景信息和上下文支持,从而提升用户的沉浸感和互动体验。

总结

通过本周的努力,我们在知识库与ChatGLM的集成方面取得了显著进展。虽然过程中遇到了一些挑战,但通过团队的协作和不断的优化,我们成功实现了知识库的检索和语言生成的无缝融合。初步测试结果表明,集成后的系统在准确性、召回率和响应时间方面都有明显提升。

未来一周,我们将继续优化系统性能,并进行用户测试,收集更多的反馈信息,为系统的进一步改进提供依据。感谢团队成员的辛勤付出和合作,也期待在接下来的工作中取得更大的成果。

希望通过这些努力,我们能够构建出一个高效、准确的智能问答系统,为用户提供更好的服务体验。感谢团队成员的辛勤付出和合作,也期待在接下来的工作中取得更大的成果。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值