@inproceedings{liang2022fusion,
title={Fusion from decomposition: A self-supervised decomposition approach for image fusion},
author={Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
booktitle={European Conference on Computer Vision},
pages={719–735},
year={2022},
organization={Springer}
}
论文级别:ECCV 2022
影响因子:
文章目录
📖论文解读
作者提出了一个图像分解模型(DeFusion),通过【自监督】实现图像融合。在没有配对数据的情况下,该模型可以将源图像【分解到特征嵌入空间】(在该空间中可以分离共有特征和独有特征),在分解阶段通过联合训练的重构头在嵌入空间内实现图像融合。该模型是一个图像融合的【通用模型】
🔑关键词
Image fusion · Self-supervised learning · Image decomposion
图像融合,自监督学习,图像分解
💭核心思想
作者认为,图像融合本质就是对多源图像重要互补信息进行整合。基于此思想,【将源图像分解为特有分量和共有分量】,将分量简单【组合】即可得到融合图像。因此,作者设计了一个前置任务(pretext task)——共有及特有分解(common and unique decomposition ,CUD),用来在一个自监督学习框架下进行图像分解。具体操作为:
- 将原始场景 x x x中的一些patch替换为噪声,生成两个“原始图像” x 1 x_1 x1和 x 2 x_2 x2
- 将” x 1 x_1 x1和 x 2 x_2 x2输入分解网络DeNet,得到共有特征 f c f_c fc以及各自的特有特征 f u 1 f_u^1 fu1和 f u 2 f_u^2 fu2
- 使用两个映射头,即共有映射头 P c P_c Pc和特有映射头 P u P_u Pu,得到 x 1 x_1 x1和 x 2 x_2 x2的共有和特有图像(部分)
- 将 f c f_c fc、 f u 1 f_u^1 fu1和 f u 2 f_u^2 fu2输入重构映射头 P r P_r Pr来重构原始场景 x x x
🪢网络结构
作者提出的网络结构如下所示。
无标签图像
x
x
x代表原始场景,使用随机掩膜
M
i
M_i
Mi和高斯噪声
n
n
n模拟退化变换
T
\mathcal T
T:
M
ˉ
i
\bar M_i
Mˉi是用随机掩膜
M
i
M_i
Mi的逻辑否运算。
将”
x
1
x_1
x1和
x
2
x_2
x2输入分解网络DeNet
ϕ
θ
(
⋅
)
\phi_\theta(·)
ϕθ(⋅),得到共有特征
f
c
f_c
fc以及各自的特有特征
f
u
1
f_u^1
fu1和
f
u
2
f_u^2
fu2
映入映射头将嵌入图像投影至图像空间
对于共有特征
f
c
f_c
fc,投影
x
^
c
=
P
c
(
f
c
)
{\hat x_c} = {P_c}\left( {{f_c}} \right)
x^c=Pc(fc)应该与
x
c
=
M
1
(
x
)
∩
M
2
(
x
)
{x_c} = {M_1}\left( x \right) \cap {M_2}\left( x \right)
xc=M1(x)∩M2(x)相似。同理,
x
u
1
=
M
1
(
x
)
∩
M
ˉ
2
(
x
)
x_u^1 = {M_1}\left( x \right) \cap {\bar M_2}\left( x \right)
xu1=M1(x)∩Mˉ2(x),
P
u
(
f
c
1
)
{P_u}\left( {{f_c^1}} \right)
Pu(fc1)
x
u
2
=
M
ˉ
1
(
x
)
∩
M
2
(
x
)
x_u^2 = {\bar M_1}\left( x \right) \cap {M_2}\left( x \right)
xu2=Mˉ1(x)∩M2(x),
P
u
(
f
c
2
)
{P_u}\left( {{f_c^2}} \right)
Pu(fc2)
是相应嵌入图像投影的ground truth
DeNet
ϕ
θ
(
⋅
)
\phi_\theta(·)
ϕθ(⋅)类似于瓶颈(bottleneck)结构,可以防止简单的映射被学习。
由三部分组成:编码器
E
θ
(
⋅
)
E_\theta(·)
Eθ(⋅),合成器
E
θ
c
(
⋅
)
E_\theta^c(·)
Eθc(⋅),解码器
D
θ
(
⋅
)
=
{
D
θ
u
(
⋅
)
,
D
θ
c
(
⋅
)
}
D_\theta(·)=\{D_\theta^u(·), D_\theta^c(·)\}
Dθ(⋅)={Dθu(⋅),Dθc(⋅)}x。
编码器包含三个最大池化层和残差层,获取压缩表示,特征图大小为
H
8
×
W
8
×
k
\frac{H}{8}×\frac{W}{8}×k
8H×8W×k
合成器仅由残差层组成,
E
θ
(
x
1
)
E_\theta(x^1)
Eθ(x1)和
E
θ
(
x
2
)
E_\theta(x^2)
Eθ(x2)被concat后输入合成器提取共有表达
解码器包含几个上采样层和残差层,获取嵌入图
推理阶段的DeFusion如下图。
📉损失函数
🔢数据集
- 训练集 COCO
- MEF
- MEFB , SICE
- MFF
- Real-MFF, Lytro, MFI-WHU, MFFW
- VIF
- TNO, RoadScene
图像融合数据集链接
[图像融合常用数据集整理]
🎢训练设置
🔬实验
📏评价指标
- CE
- QCV
- SSIM
- MEF-SSIM
- IS
- LPIPS
参考资料
✨✨✨强烈推荐必看博客 [图像融合定量指标分析]
🥅Baseline
- MEF
- CU-Net、U2Fusion、IFCNN、PMGI,DeepFuse、MEFNet
- MFIF
- CU-Net, U2Fusion, IFCNN , PMGI, MFFGAN
- VIF
- U2Fusion, IFCNN , FusionGAN, PMGI
🔬实验结果
更多实验结果及分析可以查看原文:
📖[论文下载地址]
🚀传送门
📑图像融合相关论文阅读笔记
📑[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
📑[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
📑[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
📑[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
📑[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
📑[DenseFuse: A fusion approach to infrared and visible images]
📑[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
📑[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
📑[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
📑[IFCNN: A general image fusion framework based on convolutional neural network]
📑[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
📑[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
📑[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
📑[FusionGAN: A generative adversarial network for infrared and visible image fusion]
📑[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
📑[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
📑[U2Fusion: A Unified Unsupervised Image Fusion Network]
📑综述[Visible and Infrared Image Fusion Using Deep Learning]
📚图像融合论文baseline总结
📑其他论文
📑[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
🎈其他总结
🎈[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨精品文章总结
✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]
如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~