强化学习的几种环境介绍

前言:对于强化学习相关的几种环境介绍,主要包括Mini world、Gym maze、Grid world、gym-minigrid

Mini world

https://github.com/maximecb/gym-miniworld 

MiniWorld本质上是一个非常简单的3D游戏引擎,用于模拟具有房间,门,走廊和各种对象(办公室、家庭环境、迷宫)。是基于python编写的

特点:

1.可以创建自己的关卡和修改现有的关卡。

2.有各种免费的3D模型和纹理。

3.提供俯视图。

4.能够在墙壁上展示数字和字符串。

局限性:

1.图形方面没有照片的真实感强。

MiniWorld中,世界由静态的元素组成,包括房间还有墙壁,也能够由实体组成动态对象。可以创建,连接房间,组合房间形成走廊。Mini World给人的感觉就像是第一视角巡视。采用的坐标系是右手坐标系,地平面由x轴和z轴组成,Y轴指向上方。

默认的可用操作:

Turn_left

Turn_right

Move_forward

Move_back

Pickup(agent面前捡起物体)

Drop(放下被携带的物品)

Toggle(切换项目)

Gym maze

https://github.com/MattChanTK/gym-maze

Gym-maze提供了一个简单的2D迷宫环境

Agent能够选择上、下、左、右的动作,由二维空间坐标组成,左上角单元格的坐标为(00),agent需要从左上角的蓝色方块到达右下角的红色方块。在这个过程当中需要寻找最短的路径。这个环境下包含着3*35*510*10100*100的环境。

Grid world

https://github.com/addy1997/Gridworld

Grid word类环境是一个基础类的小环境,可以根据自己的需要进行编写,可以创造出利于自己算法发挥作用的环境。这类环境一般包含的状态信息主要是agent坐标,动作可以是四面八方。适用于离散型的动作

gym-minigrid

https://github.com/maximecb/gym-minigrid

Minigrid是Gym网格观景当中特别简单的一种网格环境,这个环境的依赖项相对较少。这个环境当中类似于一种磁贴,每个网格当中可以含有一个磁贴对象,每个对象含有一个表示的类型:墙壁、地板、门、钥匙、球。

Agent在环境当中的基本操作:

向左

向右

前进

拿起物体

放下物体

打开门(与对象交互)

可以通过代码调整环境的大小、复杂性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值