第7章 大模型的数据与标注-7.1 数据采集与处理-7.1.2 数据清洗与预处理
作者:禅与计算机程序设计艺术
大模型 是当今人工智能领域一个重要的研究方向,它需要海量的高质量数据支持。在构建 大模型 时,数据采集和处理是一个关键的环节,其中包括数据清洗和预处理等步骤。本文将详细介绍数据清洗与预处理的背景、核心概念、算法原理和操作步骤,并提供代码实例、工具推荐和未来发展趋势。
7.1.2 数据清洗与预处理
7.1.2.1 背景介绍
在构建 大模型 时,数据的规模庞大且种类繁多,数据质量存在问题,因此需要对数据进行清洗和预处理。数据清洗是指从原始数据中去除垃圾数据、缺失数据和不相关数据等,以获得干净有效的数据。数据预处理是指对数据进行转换、归一化和降维等处理,以便于训练模型。
7.1.2.2 核心概念与联系
7.1.2.2.1 数据清洗
数据清洗的核心任务包括:
- 去除垃圾数据:垃圾数据是指不符合业务要求的数据,如重复数据、错误数据、空数据等。去除垃圾数据可以通过数据探索和数据过滤等方法实现。
- 去除缺失数据:缺失数据是指数据中某个特征变量的值为空或缺失的情况。去除缺失数据可以通过数据删除和数据填充等方法实现。
- 去除不相关数据:不相关数据是指数据中某些特征变量与目标变量没有任何关联的情况。去除不相关数据可以通过特征选择和特征抽取等方法实现。
7.1.2.2.2 数据预处理
数据预处理的核心任务包括:
- 数据归一化:数据归一化是指将数据的数值范围缩小到一个较小的区间,以便于训练模型。常见的数据归一化方法包括线性归一化、Z-score归一化和小数归一化等。
- 数据转换:数据转换是指将数据的格式或表示方式进行转换,以便于训练模型。常见的数据转换方法包括离散化、Binning和One-hot编码等。
- 数据降维:数据降维是指将高维数据映射到低维空间中,以减少数据的复杂度和计算量。常见的数据降维方法包括PCA、LLE和t-SNE等。
7.1.2.3 核心算法原理和具体操作步骤以及数学模型公式详细讲解
7.1.2.3.1 数据清洗算法
7.1.2.3.1.1 去除垃圾数据
去除垃圾数据的具体操作步骤如下:
- 数据探索:首先对数据进行探索,查看数据的基本统计信息,如数据的维度、数据类型、数据范围等。
- 数据过滤:接着对数据进行过滤,删除重复数据、错误数据和空数据等。可以使用Python中pandas库的drop_duplicates()、dropna()和drop()函数实现。