物理学中的群论:SU(N)群的不可约表示
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在探索量子力学和粒子物理的过程中,我们遇到了一系列需要深入理解的数学结构。其中,群论为描述这些结构提供了一个框架。群论是数学的一个分支,它研究的是“变换”或“操作”的集合,这些变换或操作在组合时保持一致的性质。在物理学中,群论被用来描述基本粒子和力之间的对称性,这些对称性揭示了物理定律的一致性以及不同现象之间的联系。
1.2 研究现状
近年来,SU(N)群的研究在理论物理学中占据了重要地位,尤其是在强相互作用理论(即量子色动力学)中。SU(N)群是特殊的酉群,其中N是群的维数,表示在高维空间中的向量。SU(N)群的不可约表示(irreducible representations)是描述粒子和场在不同对称性下的行为的重要工具,对于理解粒子物理中的基本粒子和相互作用提供了深刻的洞察。
1.3 研究意义
SU(N)群的不可约表示在粒子物理中有几个关键的应用和意义:
- 量子场论中的对称性<