物理学中的群论:SU(N)群的不可约表示

物理学中的群论:SU(N)群的不可约表示

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在探索量子力学和粒子物理的过程中,我们遇到了一系列需要深入理解的数学结构。其中,群论为描述这些结构提供了一个框架。群论是数学的一个分支,它研究的是“变换”或“操作”的集合,这些变换或操作在组合时保持一致的性质。在物理学中,群论被用来描述基本粒子和力之间的对称性,这些对称性揭示了物理定律的一致性以及不同现象之间的联系。

1.2 研究现状

近年来,SU(N)群的研究在理论物理学中占据了重要地位,尤其是在强相互作用理论(即量子色动力学)中。SU(N)群是特殊的酉群,其中N是群的维数,表示在高维空间中的向量。SU(N)群的不可约表示(irreducible representations)是描述粒子和场在不同对称性下的行为的重要工具,对于理解粒子物理中的基本粒子和相互作用提供了深刻的洞察。

1.3 研究意义

SU(N)群的不可约表示在粒子物理中有几个关键的应用和意义:

  • 量子场论中的对称性<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值