作业9 RNN - SRN

1. 实现SRN

(1)numpy实现

复现 

import numpy as np
inputs=np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])

print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')

for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t)  # 点乘积
    in_h2 = np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t)
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

和其他不同的是有一个存储器,便于循环使用。存储两个,二维矩阵

(2)在1的基础上增加激活函数tanh 

import numpy as np

inputs = np.array([[1., 1.],
                   [1., 1.],
                   [2., 2.]])  # 初始化输入序列
print('inputs is ', inputs)

state_t = np.zeros(2, )  # 初始化存储器
print('state_t is ', state_t)

w1, w2, w3, w4, w5, w6, w7, w8 = 1., 1., 1., 1., 1., 1., 1., 1.
U1, U2, U3, U4 = 1., 1., 1., 1.
print('--------------------------------------')
for input_t in inputs:
    print('inputs is ', input_t)
    print('state_t is ', state_t)
    in_h1 = np.tanh(np.dot([w1, w3], input_t) + np.dot([U2, U4], state_t))
    in_h2 = np.tanh(np.dot([w2, w4], input_t) + np.dot([U1, U3], state_t))
    state_t = in_h1, in_h2
    output_y1 = np.dot([w5, w7], [in_h1, in_h2])
    output_y2 = np.dot([w6, w8], [in_h1, in_h2])
    print('output_y is ', output_y1, output_y2)
    print('---------------')

没有tanh函数,输出的值将全部是输入值和权重的点积。这意味着网络将无法学习复杂的模式或特征,因为输出将仅仅是输入和权重的线性组合,而且没有激活函数就不能学习非线性,大多数问题都是非线性的,也有可能导致梯度爆炸。

(3)使用nn.RNNCell实现

import torch

batch_size = 1  # 只用一个样本训练
seq_len = 3  # 序列长度
input_size = 2  # 输入序列维度
hidden_size = 2  # 隐藏层维度
output_size = 2  # 输出层维度

# RNNCell
cell = torch.nn.RNNCell(input_size=input_size, hidden_size=hidden_size)
# 初始化参数 https://zhuanlan.zhihu.com/p/342012463
for name, param in cell.named_parameters():  # cell的参数
    if name.startswith("weight"):   # 检查name是否有以weight的开头的
        torch.nn.init.ones_(param)  # 初始化和param相同形状的全1矩阵
    else:
        torch.nn.init.zeros_(param)
# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])  # 所有权重为1
liner.bias.data = torch.Tensor([0.0])

seq = torch.Tensor([[[1, 1]],
                    [[1, 1]],
                    [[2, 2]]])
hidden = torch.zeros(batch_size, hidden_size)
output = torch.zeros(batch_size, output_size)

for idx, input in enumerate(seq):  # 遍历索引和值
    print('=' * 20, idx, '=' * 20)

    print('Input :', input)
    print('hidden :', hidden)

    hidden = cell(input, hidden)
    output = liner(hidden)
    print('output :', output)

 

torch.nn.RNNCell()用于构建一个基本的循环神经网络(RNN)单元。

基本语法cell = torch.nn.RNNCell(input_size, hidden_size, output_size)

输入特征数,隐藏层神经元数量,输出特征

输出会输出输出数据,隐藏状态。

结果grad_fn=<AddmmBackward0>

一般来说,它表示计算了矩阵乘法和加法操作的梯度。

在PyTorch中,反向传播是通过链式法则来计算损失函数对模型参数的梯度。AddmmBackward0是PyTorch中的一个类,用于计算和存储张量操作(例如矩阵乘法和加法)的梯度。

 (4)使用nn.RNN实现
import torch

batch_size = 1
seq_len = 3 # 输入序列长度
input_size = 2
hidden_size = 2
num_layers = 1
output_size = 2

cell = torch.nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
for name, param in cell.named_parameters():  # 初始化参数
    if name.startswith("weight"):
        torch.nn.init.ones_(param)
    else:
        torch.nn.init.zeros_(param)

# 线性层
liner = torch.nn.Linear(hidden_size, output_size)
liner.weight.data = torch.Tensor([[1, 1], [1, 1]])
liner.bias.data = torch.Tensor([0.0])

inputs = torch.Tensor([[[1, 1]],
                       [[1, 1]],
                       [[2, 2]]])
hidden = torch.zeros(num_layers, batch_size, hidden_size)
out, hidden = cell(inputs, hidden)

print('Input :', inputs[0])
print('hidden:', 0, 0)
print('Output:', liner(out[0]))
print('--------------------------------------')
print('Input :', inputs[1])
print('hidden:', out[0])
print('Output:', liner(out[1]))
print('--------------------------------------')
print('Input :', inputs[2])
print('hidden:', out[1])
print('Output:', liner(out[2]))

nn.Cell和nn.RNNCell区别?

nn.Cell是PyTorch中实现神经网络的基本类,它提供了基础的神经网络单元,可以在任意时刻使用输入和参数来计算输出。

nn.RNNCell则是特定于循环神经网络(RNN)的Cell,它继承自Cell并增加了一些特定于RNN的功能。RNNCell读取了0时刻的隐层信息h0,剩下的过程是自动循环完成的,而RNNCell则需要自己写循环处理。 

nn.RNN基本语法

用来构建不同类型的循环神经网络,如基础 RNN、LSTM(长短期记忆)和 GRU(门控循环单元)。,

nn.RNN 的参数包括:

1.input_size:输入特征的大小。

2.hidden_size:隐藏状态的大小。

3.num_layers:RNN 的层数。默认值是 1。如果你想使用多层的 RNN,你可以设置这个参数大于 1。

4.batch_first:如果设置为 True,那么输入数据的形状应该是 [batch_size, sequence_length, input_size],而不是 [sequence_length, batch_size, input_size]。默认值是 False

5.nonlinearity:激活函数。默认值是 'relu'。你可以选择 'tanh' 或 'relu'。

6.bidirectional:如果设置为 True,那么 RNN 将是双向的。

grad_fn=<SelectBack,ward0>

正在使用反向传播(backpropagation)算法来更新网络的权重。

2. 实现“序列到序列”

12.循环神经网络(基础篇)_哔哩哔哩_bilibili

要实现的是一个分类问题

独热向量?

只有一个元素为1,其余元素均为0的向量。这种向量常用于表示类别特征,即将每个类别特征转换为独热向量。长度和类别数量相同

import torch
batch_size=1
seq_len =3
input_size=4
hidden_size=2
num_layers=1
cell = torch.nn.RNN(input_size=input_size,hidden_size=hidden_size,
                    num_layers=num_layers,batch_first=True)
#(seaLen. batchSize.indutSizeinputs = torch. randn(batch size, seg len, input size)hidden = torch.zeros(num layers,batch size, hidden size)
inputs = torch.randn(batch_size, seq_len, input_size)
hidden = torch.zeros(num_layers,batch_size, hidden_size)
out,hidden = cell(inputs, hidden)
print(' Output size:', out.shape)
print (' Output:', out)
print('Hidden size:',hidden.shape)
print('Hidden:',hidden)

3. “编码器-解码器”的简单实现 

# -*- coding: utf-8 -*-
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data as Data

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

letter = [c for c in 'SE?abcdefghijklmnopqrstuvwxyz']
letter2idx = {n: i for i, n in enumerate(letter)}

seq_data = [['man', 'women'], ['black', 'white'], ['king', 'queen'], ['girl', 'boy'], ['up', 'down'], ['high', 'low']]

# Seq2Seq Parameter
n_step = max([max(len(i), len(j)) for i, j in seq_data])  # max_len(=5)
n_hidden = 128
n_class = len(letter2idx)  # classfication problem
batch_size = 3


def make_data(seq_data):
    enc_input_all, dec_input_all, dec_output_all = [], [], []

    for seq in seq_data:
        for i in range(2):
            seq[i] = seq[i] + '?' * (n_step - len(seq[i]))  # 'man??', 'women'

        enc_input = [letter2idx[n] for n in (seq[0] + 'E')]  # ['m', 'a', 'n', '?', '?', 'E']
        dec_input = [letter2idx[n] for n in ('S' + seq[1])]  # ['S', 'w', 'o', 'm', 'e', 'n']
        dec_output = [letter2idx[n] for n in (seq[1] + 'E')]  # ['w', 'o', 'm', 'e', 'n', 'E']

        enc_input_all.append(np.eye(n_class)[enc_input])
        dec_input_all.append(np.eye(n_class)[dec_input])
        dec_output_all.append(dec_output)  # not one-hot

    # make tensor
    return torch.Tensor(enc_input_all), torch.Tensor(dec_input_all), torch.LongTensor(dec_output_all)


'''
enc_input_all: [6, n_step+1 (because of 'E'), n_class]
dec_input_all: [6, n_step+1 (because of 'S'), n_class]
dec_output_all: [6, n_step+1 (because of 'E')]
'''
enc_input_all, dec_input_all, dec_output_all = make_data(seq_data)


class TranslateDataSet(Data.Dataset):
    def __init__(self, enc_input_all, dec_input_all, dec_output_all):
        self.enc_input_all = enc_input_all
        self.dec_input_all = dec_input_all
        self.dec_output_all = dec_output_all

    def __len__(self):  # return dataset size
        return len(self.enc_input_all)

    def __getitem__(self, idx):
        return self.enc_input_all[idx], self.dec_input_all[idx], self.dec_output_all[idx]


loader = Data.DataLoader(TranslateDataSet(enc_input_all, dec_input_all, dec_output_all), batch_size, True)


# Model
class Seq2Seq(nn.Module):
    def __init__(self):
        super(Seq2Seq, self).__init__()
        self.encoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # encoder
        self.decoder = nn.RNN(input_size=n_class, hidden_size=n_hidden, dropout=0.5)  # decoder
        self.fc = nn.Linear(n_hidden, n_class)

    def forward(self, enc_input, enc_hidden, dec_input):
        # enc_input(=input_batch): [batch_size, n_step+1, n_class]
        # dec_inpu(=output_batch): [batch_size, n_step+1, n_class]
        enc_input = enc_input.transpose(0, 1)  # enc_input: [n_step+1, batch_size, n_class]
        dec_input = dec_input.transpose(0, 1)  # dec_input: [n_step+1, batch_size, n_class]

        # h_t : [num_layers(=1) * num_directions(=1), batch_size, n_hidden]
        _, h_t = self.encoder(enc_input, enc_hidden)
        # outputs : [n_step+1, batch_size, num_directions(=1) * n_hidden(=128)]
        outputs, _ = self.decoder(dec_input, h_t)

        model = self.fc(outputs)  # model : [n_step+1, batch_size, n_class]
        return model


model = Seq2Seq().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(5000):
    for enc_input_batch, dec_input_batch, dec_output_batch in loader:
        # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
        h_0 = torch.zeros(1, batch_size, n_hidden).to(device)

        (enc_input_batch, dec_intput_batch, dec_output_batch) = (
        enc_input_batch.to(device), dec_input_batch.to(device), dec_output_batch.to(device))
        # enc_input_batch : [batch_size, n_step+1, n_class]
        # dec_intput_batch : [batch_size, n_step+1, n_class]
        # dec_output_batch : [batch_size, n_step+1], not one-hot
        pred = model(enc_input_batch, h_0, dec_intput_batch)
        # pred : [n_step+1, batch_size, n_class]
        pred = pred.transpose(0, 1)  # [batch_size, n_step+1(=6), n_class]
        loss = 0
        for i in range(len(dec_output_batch)):
            # pred[i] : [n_step+1, n_class]
            # dec_output_batch[i] : [n_step+1]
            loss += criterion(pred[i], dec_output_batch[i])
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


# Test
def translate(word):
    enc_input, dec_input, _ = make_data([[word, '?' * n_step]])
    enc_input, dec_input = enc_input.to(device), dec_input.to(device)
    # make hidden shape [num_layers * num_directions, batch_size, n_hidden]
    hidden = torch.zeros(1, 1, n_hidden).to(device)
    output = model(enc_input, hidden, dec_input)
    # output : [n_step+1, batch_size, n_class]

    predict = output.data.max(2, keepdim=True)[1]  # select n_class dimension
    decoded = [letter[i] for i in predict]
    translated = ''.join(decoded[:decoded.index('E')])

    return translated.replace('?', '')


print('test')
print('man ->', translate('man'))
print('mans ->', translate('mans'))
print('king ->', translate('king'))
print('black ->', translate('black'))
print('up ->', translate('up'))

4.简单总结nn.RNNCell、nn.RNN

这个已在上面总结,此处不再赘述。

5.谈一谈对“序列”、“序列到序列”的理解

序列:在深度学习中一般为带有时间先后顺序(拥有逻辑结构)的一段具有连续关系的数据(文本,语音等等),或者是生活中有位置,顺序的固定序列信息。

序列到序列学习(sequence to sequence learning, Seq2seq)是将一个输入的单词序列转换为另一个输出的单词序列的任务,相当于有条件的语言生成。自然语言处理、语音处理等领域中的机器翻译、摘要生成、对话生成、语音识别等任务都属于这类问题。基本模型使用 RNN 实现编码和解码,实际上是一个有条件的 RNN 语言模型。RNN 通常是 LSTM 和 GRU。基本模型编码器是 RNN,如 LSTM

6.总结本周理论课和作业,写心得体会 

理论课总结:

1.RNN  简单用公式描述为。w和b为权重参数和超参数。而且一般输出层用全连接神经网络连接。

循环和其他不同的是,循环有一个存储器,存储之前的输出,第i层神经元在m时刻的输入取决于i-1层神经元在m时刻的输出和i层神经元在m-1时刻的输出。讲述了简单的循环神经网络,能够处理时序问题,这是前馈神经网络的不足

应用到序列分类问题,情感分类,同步,异步序列到序列

作业总结:了解了循环神经网络内部是怎么运行的,以及代码实现。

不加激活函数有可能导致梯度的爆炸。

以及nn.RNNCell和nn.RNN的区别,输入的参数不相同以及前者是特征循环神经网络RNN的神经网络单元,后者是通用 

序列到序列的怎么运作的,注意的就是独热向量编码的长度(一个),和类别数量相同。

编码器-译码器  英语译英语

不同的是计算loss的时候因为输出的pred是三维,因此单独使用for循环

有开始标志,和结束标志

REF:

【23-24 秋学期】NNDL 作业9 RNN - SRN-CSDN博客

Seq2Seq的PyTorch实现 - mathor (wmathor.com)

序列到序列模型(一)(基本模型,RNN Search,注意力机制)-CSDN博客

  • 22
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值